Artículos de revistas
The Protein Interactome Of Collapsin Response Mediator Protein-2 (crmp2/dpysl2) Reveals Novel Partner Proteins In Brain Tissue.
Registro en:
Proteomics. Clinical Applications. v. 9, n. 9-10, p. 817-831, 2015-Oct.
1862-8354
10.1002/prca.201500004
25921334
Autor
Martins-de-Souza, Daniel
Cassoli, Juliana S
Nascimento, Juliana M
Hensley, Kenneth
Guest, Paul C
Pinzon-Velasco, Andres M
Turck, Christoph W
Institución
Resumen
Collapsin response mediator protein-2 (CRMP2) is a CNS protein involved in neuronal development, axonal and neuronal growth, cell migration, and protein trafficking. Recent studies have linked perturbations in CRMP2 function to neurodegenerative disorders such as Alzheimer's disease, neuropathic pain, and Batten disease, and to psychiatric disorders such as schizophrenia. Like most proteins, CRMP2 functions though interactions with a molecular network of proteins and other molecules. Here, we have attempted to identify additional proteins of the CRMP2 interactome to provide further leads about its roles in neurological functions. We used a combined co-immunoprecipitation and shotgun proteomic approach in order to identify CRMP2 protein partners. We identified 78 CRMP2 protein partners not previously reported in public protein interaction databases. These were involved in seven biological processes, which included cell signaling, growth, metabolism, trafficking, and immune function, according to Gene Ontology classifications. Furthermore, 32 different molecular functions were found to be associated with these proteins, such as RNA binding, ribosomal functions, transporter activity, receptor activity, serine/threonine phosphatase activity, cell adhesion, cytoskeletal protein binding and catalytic activity. In silico pathway interactome construction revealed a highly connected network with the most overrepresented functions corresponding to semaphorin interactions, along with axon guidance and WNT5A signaling. Taken together, these findings suggest that the CRMP2 pathway is critical for regulating neuronal and synaptic architecture. Further studies along these lines might uncover novel biomarkers and drug targets for use in drug discovery. 9 817-831
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Efeito do consumo das proteínas, peptídeos e aminoácidos do soro do leite nas heat shock proteins (HSPs) e parâmetros relacionados em ratos = Effect of the intake of whey proteins, their peptides and amino acids on the heat shock proteins (HSPs) and health related parameters in rats
Moura, Carolina Soares de, 1988- -
ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence
Qiu, J.; Bernhofer, M.; Heinzinger, M.; Kemper, S.; Norambuena Arenas, Tomás; Melo Ledermann, Francisco Javier; Rost, B. (2020)