dc.creatorSuzuki, Celso T N
dc.creatorGomes, Jancarlo F
dc.creatorFalcão, Alexandre X
dc.creatorPapa, João P
dc.creatorHoshino-Shimizu, Sumie
dc.date2013-Mar
dc.date2015-11-27T13:31:10Z
dc.date2015-11-27T13:31:10Z
dc.date.accessioned2018-03-29T01:16:57Z
dc.date.available2018-03-29T01:16:57Z
dc.identifierIeee Transactions On Bio-medical Engineering. v. 60, n. 3, p. 803-12, 2013-Mar.
dc.identifier1558-2531
dc.identifier10.1109/TBME.2012.2187204
dc.identifierhttp://www.ncbi.nlm.nih.gov/pubmed/22328170
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/200418
dc.identifier22328170
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1300651
dc.descriptionHuman intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis.
dc.description60
dc.description803-12
dc.languageeng
dc.relationIeee Transactions On Bio-medical Engineering
dc.relationIEEE Trans Biomed Eng
dc.rightsfechado
dc.rights
dc.sourcePubMed
dc.subjectAnimals
dc.subjectFeces
dc.subjectHumans
dc.subjectImage Interpretation, Computer-assisted
dc.subjectImage Processing, Computer-assisted
dc.subjectIntestinal Diseases, Parasitic
dc.subjectMicroscopy
dc.subjectParasites
dc.subjectPattern Recognition, Automated
dc.titleAutomatic Segmentation And Classification Of Human Intestinal Parasites From Microscopy Images.
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución