dc.creatorMantello, Camila C
dc.creatorSuzuki, Fernando I
dc.creatorSouza, Livia M
dc.creatorGonçalves, Paulo S
dc.creatorSouza, Anete P
dc.date2012
dc.date2015-11-27T13:28:39Z
dc.date2015-11-27T13:28:39Z
dc.date.accessioned2018-03-29T01:15:36Z
dc.date.available2018-03-29T01:15:36Z
dc.identifierBmc Research Notes. v. 5, p. 329, 2012.
dc.identifier1756-0500
dc.identifier10.1186/1756-0500-5-329
dc.identifierhttp://www.ncbi.nlm.nih.gov/pubmed/22731927
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/200073
dc.identifier22731927
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1300306
dc.descriptionThe rubber tree (Hevea brasiliensis) is native to the Amazon region and it is the major source of natural rubber in the world. Rubber tree breeding is time-consuming and expensive. However, molecular markers such as microsatellites can reduce the time required for these programs. This study reports new genomic microsatellite markers developed and characterized in H. brasiliensis and the evaluation of their transferability to other Hevea species. We constructed di- and trinucleotide-enriched libraries. From these two libraries, 153 primer pairs were designed and initially evaluated using 9 genotypes of H. brasiliensis. A total of 119 primer pairs had a good amplification product, 90 of which were polymorphic. We chose 46 of the polymorphic markers and characterized them in 36 genotypes of H. brasiliensis. The expected and observed heterozygosities ranged from 0.1387 to 0.8629 and 0.0909 to 0.9167, respectively. The polymorphism information content (PIC) values ranged from 0.097 to 0.8339, and the mean number of alleles was 6.4 (2-17). These 46 microsatellites were also tested in 6 other Hevea species. The percentage of transferability ranged from 82% to 87%. Locus duplication was found in H. brasiliensis and also in 5 of other species in which transferability was tested. This study reports new microsatellite markers for H. brasiliensis that can be used for genetic linkage mapping, quantitative trait loci identification and marker- assisted selection. The high percentage of transferability may be useful in the evaluations of genetic variability and to monitor introgression of genetic variability from different Hevea species into breeding programs.
dc.description5
dc.description329
dc.languageeng
dc.relationBmc Research Notes
dc.relationBMC Res Notes
dc.rightsfechado
dc.rights
dc.sourcePubMed
dc.subjectBreeding
dc.subjectDna, Plant
dc.subjectDinucleotide Repeats
dc.subjectGene Duplication
dc.subjectGene Expression Regulation, Plant
dc.subjectGene Frequency
dc.subjectGene Library
dc.subjectGenetic Loci
dc.subjectGenome, Plant
dc.subjectGenotype
dc.subjectHeterozygote
dc.subjectHevea
dc.subjectMicrosatellite Repeats
dc.subjectNucleic Acid Amplification Techniques
dc.subjectPolymerase Chain Reaction
dc.subjectPolymorphism, Genetic
dc.subjectSpecies Specificity
dc.subjectTrinucleotide Repeats
dc.titleMicrosatellite Marker Development For The Rubber Tree (hevea Brasiliensis): Characterization And Cross-amplification In Wild Hevea Species.
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución