Artículos de revistas
Integral Localized Approximation Description Of Ordinary Bessel Beams And Application To Optical Trapping Forces.
Registro en:
Biomedical Optics Express. v. 2, n. 7, p. 1893-906, 2011-Jul.
2156-7085
10.1364/BOE.2.001893
21750767
Autor
Ambrosio, Leonardo A
Hernández-Figueroa, Hugo E
Institución
Resumen
Ordinary Bessel beams are described in terms of the generalized Lorenz-Mie theory (GLMT) by adopting, for what is to our knowledge the first time in the literature, the integral localized approximation for computing their beam shape coefficients (BSCs) in the expansion of the electromagnetic fields. Numerical results reveal that the beam shape coefficients calculated in this way can adequately describe a zero-order Bessel beam with insignificant difference when compared to other relative time-consuming methods involving numerical integration over the spherical coordinates of the GLMT coordinate system, or quadratures. We show that this fast and efficient new numerical description of zero-order Bessel beams can be used with advantage, for example, in the analysis of optical forces in optical trapping systems for arbitrary optical regimes. 2 1893-906
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Method For Electro-optical Keying Using Multiple Pulses And Current Stepping Via Semiconductor Optical Amplifiers, Devices For Electro-optical Keying Of Optical Carriers, And Use Of The Devices
Gallep Cristiano De Melo [br]; Figueiredo Rafael Carvalho [br]; Ribeiro Napoleao Dos Santos [br]; Conforti Evandro [br]