dc.creatorMelo-Filho, Antônio Aldo
dc.creatorWeber Guimarães Barreto, Maria
dc.creatorCapelli Nassr, Azize Cristina
dc.creatorRogério, Fábio
dc.creatorLangone, Francesco
dc.creatorPereira, Luis Antonio Violin
dc.creatorSbragia, Lourenço
dc.date2009
dc.date2015-11-27T13:15:17Z
dc.date2015-11-27T13:15:17Z
dc.date.accessioned2018-03-29T01:08:57Z
dc.date.available2018-03-29T01:08:57Z
dc.identifierPediatric Neurosurgery. v. 45, n. 3, p. 198-204, 2009.
dc.identifier1423-0305
dc.identifier10.1159/000222670
dc.identifierhttp://www.ncbi.nlm.nih.gov/pubmed/19494564
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/198349
dc.identifier19494564
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1298582
dc.descriptionExposure of the spinal cord in myelomeningocele (MM) throughout gestation increases spinal injury. Astrocyte activation evidenced by glial fibrillary acidic proteins (GFAP) indicates the extent of injury. Corticosteroids modulate GFAP synthesis, but their effect in MM is unclear. The purpose of this study was to evaluate the GFAP expression in a fetal rat model of dysraphism and the effect of corticosteroid treatment on this marker and on clinical neurological disabilities. Dysraphism was surgically created in 2 groups of 48 rat fetuses; group 1: control, and group 2: treated with corticosteroid. Each group was subdivided into fetuses with surgically created MM, controls and shams on day 18.5 of gestation (term = 22 days). Fetuses were harvested on day 21.5, examined for evidence of neurological deficits, and the following clinical parameters were registered: kyphosis, tail deformities, leg deformities, leg paralysis or paresis and pain perception. The fetuses were fixed for GFAP immunostaining. All fetuses with MM in group 1 presented neurological deficits and glial reactions with GFAP expression, as opposed to controls and shams. In group 2, corticosteroid treatment prevented some neurological deficits (18-25%), reducing glial response and GFAP expression. Experimentally induced dysraphism in the rat fetus is related to glial response and increased GFAP expression in the spinal cord. Corticoid treatment clinically improved nerve injury in some fetuses. It reduced glial reaction and GFAP expression.
dc.description45
dc.description198-204
dc.languageeng
dc.relationPediatric Neurosurgery
dc.relationPediatr Neurosurg
dc.rightsfechado
dc.rightsCopyright 2009 S. Karger AG, Basel.
dc.sourcePubMed
dc.subjectAdrenal Cortex Hormones
dc.subjectAnimals
dc.subjectBiological Markers
dc.subjectDisease Models, Animal
dc.subjectFemale
dc.subjectGlial Fibrillary Acidic Protein
dc.subjectGliosis
dc.subjectMale
dc.subjectPregnancy
dc.subjectRats
dc.subjectRats, Sprague-dawley
dc.subjectSpinal Cord
dc.subjectSpinal Cord Injuries
dc.subjectSpinal Dysraphism
dc.titleCorticosteroids Reduce Glial Fibrillary Acidic Protein Expression In Response To Spinal Cord Injury In A Fetal Rat Model Of Dysraphism.
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución