dc.creatorRibeiro, A D
dc.creatorde Aguiar, M A M
dc.creatorBaranger, M
dc.date2004-Jun
dc.date2015-11-27T12:58:17Z
dc.date2015-11-27T12:58:17Z
dc.date.accessioned2018-03-29T00:59:17Z
dc.date.available2018-03-29T00:59:17Z
dc.identifierPhysical Review. E, Statistical, Nonlinear, And Soft Matter Physics. v. 69, n. 6 Pt 2, p. 066204, 2004-Jun.
dc.identifier1539-3755
dc.identifier
dc.identifierhttp://www.ncbi.nlm.nih.gov/pubmed/15244705
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/195862
dc.identifier15244705
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1296095
dc.descriptionThe semiclassical limit of the coherent state propagator <z absolute value of e(-i H T/Planck's over 2 pi) z'> involves complex classical trajectories of the Hamiltonian H(u,v) = <v absolute value of H u> satisfying u(0) = z' and v(T) = z*. In this work we study mostly the case z' = z. The propagator is then the return probability amplitude of a wave packet. We show that a plot of the exact return probability brings out the quantal images of the classical periodic orbits. Then we compare the exact return probability with its semiclassical approximation for a soft chaotic system with two degrees of freedom. We find two situations where classical trajectories satisfying the correct boundary conditions must be excluded from the semiclassical formula. The first occurs when the contribution of the trajectory to the propagator becomes exponentially large as Planck's over 2 pi goes to zero. The second occurs when the contributing trajectories undergo bifurcations. Close to the bifurcation the semiclassical formula diverges. More interestingly, in the example studied, after the bifurcation, where more than one trajectory satisfying the boundary conditions exist, only one of them in fact contributes to the semiclassical formula, a phenomenon closely related to Stokes lines. When the contributions of these trajectories are filtered out, the semiclassical results show excellent agreement with the exact calculations.
dc.description69
dc.description066204
dc.languageeng
dc.relationPhysical Review. E, Statistical, Nonlinear, And Soft Matter Physics
dc.relationPhys Rev E Stat Nonlin Soft Matter Phys
dc.rightsaberto
dc.rights
dc.sourcePubMed
dc.titleSemiclassical Approximations Based On Complex Trajectories.
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución