dc.creatorBraga, R S
dc.creatorVendrame, R
dc.creatorGalvão, D S
dc.date
dc.date2015-11-27T12:22:48Z
dc.date2015-11-27T12:22:48Z
dc.date.accessioned2018-03-29T00:54:36Z
dc.date.available2018-03-29T00:54:36Z
dc.identifierJournal Of Chemical Information And Computer Sciences. v. 40, n. 6, p. 1377-85
dc.identifier0095-2338
dc.identifier
dc.identifierhttp://www.ncbi.nlm.nih.gov/pubmed/11128096
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/194646
dc.identifier11128096
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1294879
dc.descriptionRecently a new methodology, called electronic indices methodology (EIM), based on local density of state calculations (LDOS) using topological and semiempirical methods, was proposed to identify the biological activity of polycyclic aromatic hydrocarbons (PAHs). In this work we apply the concepts of the EIM approach to classify the progestational activity of 21 17alpha-acetoxyprogesterones (steroid hormones) (APs). The EIM approach pointed to a few descriptors, which correctly classify the active/inactive compounds of this class (approximately 90%). We show that these descriptors arise naturally from principal component analysis (PCA) and neural network (NN) calculations. Moreover, using only the parameters from EIM, instead of a large set of descriptors that have been used before to describe the biological activity of these hormones, we slightly improve and simplify PCA and NN results. Finally, the molecular region related to the chemical activity of these hormones naturally appears in our theoretical analysis, from the local density of states of the frontier orbitals. This shows the generality of the principles of EIM approach, and confirms that the combination of these distinct methodologies can be an efficient and powerful tool in the structure-activity studies of many different classes of compounds.
dc.description40
dc.description1377-85
dc.languageeng
dc.relationJournal Of Chemical Information And Computer Sciences
dc.relationJ Chem Inf Comput Sci
dc.rightsfechado
dc.rights
dc.sourcePubMed
dc.subjectHydrogen-ion Concentration
dc.subjectHydroxyprogesterones
dc.subjectMolecular Structure
dc.subjectNeural Networks (computer)
dc.subjectStructure-activity Relationship
dc.titleStructure--activity Relationship Studies Of Substituted 17alpha-acetoxyprogesterone Hormones.
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución