dc.creatorIsmail, KAR
dc.creatorAlves, CLF
dc.creatorModesto, MS
dc.date2001
dc.dateJAN
dc.date2014-11-13T14:53:44Z
dc.date2015-11-26T18:07:56Z
dc.date2014-11-13T14:53:44Z
dc.date2015-11-26T18:07:56Z
dc.date.accessioned2018-03-29T00:50:03Z
dc.date.available2018-03-29T00:50:03Z
dc.identifierApplied Thermal Engineering. Pergamon-elsevier Science Ltd, v. 21, n. 1, n. 53, n. 77, 2001.
dc.identifier1359-4311
dc.identifierWOS:000165633000004
dc.identifier10.1016/S1359-4311(00)00002-8
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/62220
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/62220
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/62220
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1293703
dc.descriptionThis paper presents the results of a numerical and experimental investigation realized on finned tubes with the objective of using them in thermal storage systems. The model is based upon the pure conduction mechanism of heat transfer, the enthalpy formulation approach and the control volume method. The finite difference approximation and the alternating direction scheme are used to discretize the basic equations and the associated boundary and initial conditions. The model was validated by comparison with available results and additional experimental measurements realized by the authors. The number of fins, fin length, fin thickness, the degree of super heat and the aspect ratio of the annular spacing are found to influence the time for complete solidification, solidified mass fraction and the total stored energy. The results confirm the importance of the fins in delaying the undesirable effects of natural convection during the phase change processes. Also, this study indicates the strong influence of the annular space size, the radial length of the fin and the number of fins on the solidified mass fraction and the time for complete phase change. Based upon experimental observations and the tendencies of the numerical results, a metallic tube fitted with four-five fins of constant thickness equal to the tube wall thickness and of radial length around twice the tube diameter should be a compromise solution between efficiency, increase in the heat flow rate and the loss of available storage capacity. (C) 2000 Elsevier Science Ltd. All rights reserved.
dc.description21
dc.description1
dc.description53
dc.description77
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationApplied Thermal Engineering
dc.relationAppl. Therm. Eng.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectsolidification
dc.subjectfusion
dc.subjectPCM
dc.subjectaxially finned tubes
dc.subjectenergy storage
dc.subjectCoolant-carrying Tube
dc.subjectEnergy Storage-system
dc.subjectPhase-change Problems
dc.subjectForced-convection
dc.titleNumerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución