dc.creatorAmazonas, D
dc.creatorAleixo, R
dc.creatorSchleicher, J
dc.creatorCosta, JC
dc.date2010
dc.dateMAR-APR
dc.date2014-11-13T14:07:45Z
dc.date2015-11-26T18:07:50Z
dc.date2014-11-13T14:07:45Z
dc.date2015-11-26T18:07:50Z
dc.date.accessioned2018-03-29T00:49:57Z
dc.date.available2018-03-29T00:49:57Z
dc.identifierGeophysics. Soc Exploration Geophysicists, v. 75, n. 2, n. S51, n. S59, 2010.
dc.identifier0016-8033
dc.identifierWOS:000276868100024
dc.identifier10.1190/1.3337317
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/77491
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/77491
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/77491
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1293679
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionStandard real-valued finite-difference (FD) and Fourier finite-difference (FFD) migrations cannot handle evanescent waves correctly, which can lead to numerical instabilities in the presence of strong velocity variations. A possible solution to these problems is the complex Padeacute approximation, which avoids problems with evanescent waves by rotating the branch cut of the complex square root. We have applied this approximation to the acoustic wave equation for vertical transversely isotropic media to derive more stable FD and hybrid FD/FFD migrations for such media. Our analysis of the dispersion relation of the new method indicates that it should provide more stable migration results with fewer artifacts and higher accuracy at steep dips. Our studies lead to the conclusion that the rotation angle of the branch cut that should yield the most stable image is 60 degrees for FD migration, as confirmed by numerical impulse responses and work with synthetic data.
dc.description75
dc.description2
dc.descriptionS51
dc.descriptionS59
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionPetrobras
dc.descriptionWave Inversion Technology (WIT) Consortium
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFAPESP [06/04410-5]
dc.languageen
dc.publisherSoc Exploration Geophysicists
dc.publisherTulsa
dc.publisherEUA
dc.relationGeophysics
dc.relationGeophysics
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectacoustic waves
dc.subjectanisotropic media
dc.subjectdispersion (wave)
dc.subjectfinite difference methods
dc.subjectseismic waves
dc.subjectseismology
dc.subjectwave equations
dc.subjectTransversely Isotropic Media
dc.subjectWave-equation
dc.subjectOne-way
dc.subjectVti Media
dc.subjectApproximations
dc.subjectPropagator
dc.titleAnisotropic complex Padeacute hybrid finite-difference depth migration
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución