dc.creatorRivera, EC
dc.creatorda Costa, AC
dc.creatorRegina, M
dc.creatorMaciel, W
dc.creatorMaciel, R
dc.date2006
dc.dateMAR
dc.date2014-11-10T17:03:51Z
dc.date2015-11-26T18:07:02Z
dc.date2014-11-10T17:03:51Z
dc.date2015-11-26T18:07:02Z
dc.date.accessioned2018-03-29T00:49:10Z
dc.date.available2018-03-29T00:49:10Z
dc.identifierApplied Biochemistry And Biotechnology. Humana Press Inc, v. 132, n. 41699, n. 969, n. 984, 2006.
dc.identifier0273-2289
dc.identifier1559-0291
dc.identifierWOS:000203005100009
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/65691
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/65691
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/65691
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1293490
dc.descriptionIn this present article, genetic algorithms and multilayer perceptron neural network (MLPNN) have been integrated in order to reduce the complexity of an optimization problem. A data-driven identification method based on MLPNN and optimal design of experiments is described in detail. The nonlinear model of an extractive ethanol process, represented by a MLPNN, is optimized using real-coded and binary-coded genetic algorithms to determine the optimal operational conditions. In order to check the validity of the computational modeling, the results were compared with the optimization of a deterministic model, whose kinetic parameters were experimentally determined as functions of the temperature.
dc.description132
dc.description41699
dc.description969
dc.description984
dc.languageen
dc.publisherHumana Press Inc
dc.publisherTotowa
dc.publisherEUA
dc.relationApplied Biochemistry And Biotechnology
dc.relationAppl. Biochem. Biotechnol.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectalcoholic fermentation process
dc.subjectartificial intelligence
dc.subjectdesign of experiments
dc.subjectmodeling
dc.subjectpenalty function
dc.subjectFermentation Processes
dc.subjectSimulation
dc.subjectDesign
dc.titleEthyl alcohol production optimization by coupling genetic algorithm and multilayer perceptron neural network
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución