dc.creator | Camargo, RF | |
dc.creator | Charnet, R | |
dc.creator | de Oliveira, EC | |
dc.date | 2009 | |
dc.date | APR | |
dc.date | 2014-08-01T18:38:56Z | |
dc.date | 2015-11-26T18:06:58Z | |
dc.date | 2014-08-01T18:38:56Z | |
dc.date | 2015-11-26T18:06:58Z | |
dc.date.accessioned | 2018-03-29T00:49:07Z | |
dc.date.available | 2018-03-29T00:49:07Z | |
dc.identifier | Journal Of Mathematical Physics. Amer Inst Physics, v. 50, n. 4, 2009. | |
dc.identifier | 0022-2488 | |
dc.identifier | WOS:000266596800040 | |
dc.identifier | 10.1063/1.3119484 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81833 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/81833 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1293478 | |
dc.description | In this paper we discuss some fractional Green's functions associated with the fractional differential equations which appear in several fields of science, more precisely, the so-called wave reaction-diffusion equation and some of its particular cases. The methodology presented is the juxtaposition of integral transforms, in particular, the Laplace and the Fourier integral transforms. Some recent results involving the reaction-diffusion equation are pointed out. | |
dc.description | 50 | |
dc.description | 4 | |
dc.language | en | |
dc.publisher | Amer Inst Physics | |
dc.publisher | Melville | |
dc.publisher | EUA | |
dc.relation | Journal Of Mathematical Physics | |
dc.relation | J. Math. Phys. | |
dc.rights | aberto | |
dc.source | Web of Science | |
dc.subject | Fourier transforms | |
dc.subject | Green's function methods | |
dc.subject | Laplace transforms | |
dc.subject | reaction-diffusion systems | |
dc.subject | wave equations | |
dc.subject | Reaction-diffusion Equations | |
dc.subject | Dynamics | |
dc.subject | Memory | |
dc.subject | Terms | |
dc.subject | Wave | |
dc.title | On some fractional Green's functions | |
dc.type | Artículos de revistas | |