dc.creatorHell, M
dc.creatorCosta, P
dc.creatorGomide, F
dc.date2008
dc.dateOCT
dc.date2014-07-30T14:30:47Z
dc.date2015-11-26T18:06:33Z
dc.date2014-07-30T14:30:47Z
dc.date2015-11-26T18:06:33Z
dc.date.accessioned2018-03-29T00:48:45Z
dc.date.available2018-03-29T00:48:45Z
dc.identifierIeee Transactions On Power Delivery. Ieee-inst Electrical Electronics Engineers Inc, v. 23, n. 4, n. 2058, n. 2067, 2008.
dc.identifier0885-8977
dc.identifier1937-4208
dc.identifierWOS:000259574000045
dc.identifier10.1109/TPWRD.2008.923994
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/59104
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/59104
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1293390
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionIn this paper, we introduce a new approach based on the participatory learning paradigm to train a class of hybrid neurofuzzy networks whose aim is to model the thermal behavior of power transformers. The participatory learning paradigm is a training procedure that tends to emulate the human learning mechanism. An acceptance mechanism determines which observation is used for learning based upon their compatibility with the current beliefs. The proposed model is compared with actual data obtained from an experimental power transformer equipped with fiber-optic probes. Comparisons with alternative approaches suggested in the literature are included to show the effectiveness of participatory learning to model the thermal behavior of power transformers.
dc.description23
dc.description4
dc.description2058
dc.description2067
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFAPESP [03/05042-1]
dc.descriptionCNPq [304857/2006-8]
dc.languageen
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.publisherPiscataway
dc.publisherEUA
dc.relationIeee Transactions On Power Delivery
dc.relationIEEE Trans. Power Deliv.
dc.rightsfechado
dc.rightshttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dc.sourceWeb of Science
dc.subjectnonlinear modeling
dc.subjectparticipatory learning
dc.subjectpower transformers
dc.subjectthermal modeling
dc.subjectOverload Protection
dc.titleParticipatory learning in power transformers thermal modeling
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución