dc.creatorDi Vincenzo, OM
dc.creatorKoshlukov, P
dc.creatorValenti, A
dc.date2004
dc.dateMAY 15
dc.date2014-11-19T20:33:54Z
dc.date2015-11-26T18:05:51Z
dc.date2014-11-19T20:33:54Z
dc.date2015-11-26T18:05:51Z
dc.date.accessioned2018-03-29T00:48:07Z
dc.date.available2018-03-29T00:48:07Z
dc.identifierJournal Of Algebra. Academic Press Inc Elsevier Science, v. 275, n. 2, n. 550, n. 566, 2004.
dc.identifier0021-8693
dc.identifierWOS:000221074300007
dc.identifier10.1016/j.jalgebra.2003.09.004
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68163
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/68163
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/68163
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1293231
dc.descriptionLet K be an infinite field and let UTn(K) denote the algebra of n x n upper triangular matrices over K. We describe all elementary gradings on this algebra. Further we describe the generators of the ideals of graded polynomial identities of UTn(K) and we produce linear bases of the corresponding relatively free graded algebras. We prove that one can distinguish the elementary gradings by their graded identities. We describe bases of the graded polynomial identities in several "typical" cases. Although in these cases we consider elementary gradings by cyclic groups, the same methods serve for elementary gradings by any finite group. (C) 2004 Elsevier Inc. All rights reserved.
dc.description275
dc.description2
dc.description550
dc.description566
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Algebra
dc.relationJ. Algebra
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectgraded identities
dc.subjectelementary grading
dc.subjectupper triangular matrices
dc.subjectPolynomial-identities
dc.subjectOrder-n
dc.titleGradings on the algebra of upper triangular matrices and their graded identities
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución