dc.creatorFerreira, LCF
dc.creatorVillamizar-Roa, EJ
dc.date2013
dc.dateJUN
dc.date2014-08-01T18:29:21Z
dc.date2015-11-26T18:04:32Z
dc.date2014-08-01T18:29:21Z
dc.date2015-11-26T18:04:32Z
dc.date.accessioned2018-03-29T00:46:41Z
dc.date.available2018-03-29T00:46:41Z
dc.identifierCommunications In Mathematical Sciences. Int Press Boston, Inc, v. 11, n. 2, n. 421, n. 439, 2013.
dc.identifier1539-6746
dc.identifierWOS:000316443800005
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/79613
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/79613
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1292879
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionWe consider the convection problem of a fluid with viscosity depending on temperature in either a bounded or an exterior domain Omega subset of R-N, N = 2, 3. It is assumed that the temperature is transported without thermal conductance (dissipation) by the velocity field which is described by the Navier-Stokes flow. This model is commonly called the Boussinesq system with partial viscosity. In this paper we prove the existence and uniqueness of strong solutions for the Boussinesq system with partial viscosity with initial data in W-2-2/p,W- p (Omega) x W-1,W-q (Omega). For a bounded domain Omega, we also analyze the inviscid limit problem when the conductivity in the fully viscous Boussinesq system goes to zero.
dc.description11
dc.description2
dc.description421
dc.description439
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherInt Press Boston, Inc
dc.publisherSomerville
dc.publisherEUA
dc.relationCommunications In Mathematical Sciences
dc.relationCommun. Math. Sci.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectBoussinesq system
dc.subjectpartial viscosity
dc.subjectstrong solutions
dc.subjectinviscid limit
dc.subjectConvection Problem
dc.subjectWell-posedness
dc.subjectEquations
dc.subjectSpaces
dc.subjectExistence
dc.subjectUniqueness
dc.subjectBehavior
dc.subjectModel
dc.titleSTRONG SOLUTIONS AND INVISCID LIMIT FOR BOUSSINESQ SYSTEM WITH PARTIAL VISCOSITY
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución