dc.creatorCatuogno, P
dc.creatorOlivera, C
dc.date2014
dc.date38047
dc.date2014-08-01T18:29:21Z
dc.date2015-11-26T18:04:32Z
dc.date2014-08-01T18:29:21Z
dc.date2015-11-26T18:04:32Z
dc.date.accessioned2018-03-29T00:46:40Z
dc.date.available2018-03-29T00:46:40Z
dc.identifierApplicable Analysis. Taylor & Francis Ltd, v. 93, n. 3, n. 646, n. 652, 2014.
dc.identifier0003-6811
dc.identifier1563-504X
dc.identifierWOS:000333943700013
dc.identifier10.1080/00036811.2013.797074
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/79612
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/79612
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1292878
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionThis work introduces a pathwise notion of solution for the stochastic Burgers equation, in particular, our approach encompasses the Cole-Hopf solution. The developments are based on regularization arguments from the theory of distributions.
dc.description93
dc.description3
dc.description646
dc.description652
dc.descriptionFAEPEX [1324/12]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFAEPEX [1324/12]
dc.descriptionFAPESP [2012/18739-0]
dc.languageen
dc.publisherTaylor & Francis Ltd
dc.publisherAbingdon
dc.publisherInglaterra
dc.relationApplicable Analysis
dc.relationAppl. Anal.
dc.rightsfechado
dc.rightshttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dc.sourceWeb of Science
dc.subjectgeneralized stochastic processes
dc.subjectgeneralized functions
dc.subjectstochastic partial differential equations
dc.subjectstochastic Burgers equation
dc.subjectColombeau algebras
dc.subjectHeat-equation
dc.titleStrong solution of the stochastic Burgers equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución