dc.creatorMesquita, RC
dc.creatorDurduran, T
dc.creatorYu, GQ
dc.creatorBuckley, EM
dc.creatorKim, MN
dc.creatorZhou, C
dc.creatorChoe, R
dc.creatorSunar, U
dc.creatorYodh, AG
dc.date2011
dc.date47058
dc.date2014-08-01T18:29:18Z
dc.date2015-11-26T18:04:30Z
dc.date2014-08-01T18:29:18Z
dc.date2015-11-26T18:04:30Z
dc.date.accessioned2018-03-29T00:46:38Z
dc.date.available2018-03-29T00:46:38Z
dc.identifierPhilosophical Transactions Of The Royal Society A-mathematical Physical And Engineering Sciences. Royal Soc, v. 369, n. 1955, n. 4390, n. 4406, 2011.
dc.identifier1364-503X
dc.identifierWOS:000296558900004
dc.identifier10.1098/rsta.2011.0232
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/79591
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/79591
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1292868
dc.descriptionDiffuse optics has proven useful for quantitative assessment of tissue oxy- and deoxyhaemoglobin concentrations and, more recently, for measurement of microvascular blood flow. In this paper, we focus on the flow monitoring technique: diffuse correlation spectroscopy (DCS). Representative clinical and pre-clinical studies from our laboratory illustrate the potential of DCS. Validation of DCS blood flow indices in human brain and muscle is presented. Comparison of DCS with arterial spin-labelled MRI, xenon-CT and Doppler ultrasound shows good agreement (0.50< r < 0.95) over a wide range of tissue types and source detector distances, corroborating the potential of the method to measure perfusion non-invasively and in vivo at the microvasculature level. Alloptical measurements of cerebral oxygen metabolism in both rat brain, following middle cerebral artery occlusion, and human brain, during functional activation, are also described. In both situations, the use of combined DCS and diffuse optical spectroscopy/near-infrared spectroscopy to monitor changes in oxygen consumption by the tissue is demonstrated. Finally, recent results spanning from gene expression-induced angiogenic response to stroke care and cancer treatment monitoring are discussed. Collectively, the research illustrates the capability of DCS to quantitatively monitor perfusion from bench to bedside, providing results that match up both with literature findings and with similar experiments performed with other techniques.
dc.description369
dc.description1955
dc.description4390
dc.description4406
dc.descriptionNational Institute of Health [NS-060653, HL-57835, RR-02305, NS-45839, CA-126187]
dc.descriptionNational Institute of Health [NS-060653, HL-57835, RR-02305, NS-45839, CA-126187]
dc.languageen
dc.publisherRoyal Soc
dc.publisherLondon
dc.publisherInglaterra
dc.relationPhilosophical Transactions Of The Royal Society A-mathematical Physical And Engineering Sciences
dc.relationPhilos. Trans. R. Soc. A-Math. Phys. Eng. Sci.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectdiffuse correlation spectroscopy
dc.subjectblood flow
dc.subjectcerebral blood flow
dc.subjectoxygen metabolism
dc.subjectbrain
dc.subjectcancer
dc.subjectNear-infrared Spectroscopy
dc.subjectWave Spectroscopy
dc.subjectHemodynamic-responses
dc.subjectPhotodynamic Therapy
dc.subjectHuman Brain
dc.subjectNoninvasive Measurement
dc.subjectLight-scattering
dc.subjectBrownian-motion
dc.subjectRat-brain
dc.subjectOxygenation
dc.titleDirect measurement of tissue blood flow and metabolism with diffuse optics
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución