dc.creatorConiglio, ME
dc.creatorSernadas, AC
dc.creatorSernadas, CS
dc.date2003
dc.dateAUG
dc.date2014-11-19T13:15:38Z
dc.date2015-11-26T18:03:27Z
dc.date2014-11-19T13:15:38Z
dc.date2015-11-26T18:03:27Z
dc.date.accessioned2018-03-29T00:45:21Z
dc.date.available2018-03-29T00:45:21Z
dc.identifierJournal Of Logic And Computation. Oxford Univ Press, v. 13, n. 4, n. 595, n. 624, 2003.
dc.identifier0955-792X
dc.identifierWOS:000185201200009
dc.identifier10.1093/logcom/13.4.595
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/66914
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/66914
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/66914
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1292544
dc.descriptionThe concept of fibring is extended to higher-order logics with arbitrary modalities and binding operators. A general completeness theorem is established for such logics including HOL and with the meta-theorem of deduction. As a corollary, completeness is shown to be preserved when fibring such rich logics. This result is extended to weaker logics in the cases where fibring preserves conservativeness of HOL-enrichments. Soundness is shown to be preserved by fibring without any further assumptions.
dc.description13
dc.description4
dc.description595
dc.description624
dc.languageen
dc.publisherOxford Univ Press
dc.publisherOxford
dc.publisherInglaterra
dc.relationJournal Of Logic And Computation
dc.relationJ. Logic Comput.
dc.rightsfechado
dc.rightshttp://www.oxfordjournals.org/access_purchase/self-archiving_policyb.html
dc.sourceWeb of Science
dc.subjectmodal higher-order logic
dc.subjectcategorical logic
dc.subjectcompleteness
dc.subjectconservative extensions
dc.subjectCompleteness Preservation
dc.titleFibring logics with topos semantics
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución