dc.creatorBorin, A
dc.creatorFerrao, MF
dc.creatorMello, C
dc.creatorCordi, L
dc.creatorPataca, LCM
dc.creatorDuran, N
dc.creatorPoppi, RJ
dc.date2007
dc.dateFEB
dc.date2014-11-19T12:14:11Z
dc.date2015-11-26T18:03:01Z
dc.date2014-11-19T12:14:11Z
dc.date2015-11-26T18:03:01Z
dc.date.accessioned2018-03-29T00:44:47Z
dc.date.available2018-03-29T00:44:47Z
dc.identifierAnalytical And Bioanalytical Chemistry. Springer Heidelberg, v. 387, n. 3, n. 1105, n. 1112, 2007.
dc.identifier1618-2642
dc.identifierWOS:000243815500039
dc.identifier10.1007/s00216-006-0971-7
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/58607
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/58607
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/58607
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1292403
dc.descriptionThis paper reports an approach for quantification of Lactobacillus in fermented milk, grown in a selective medium (MRS agar), by use of digital colour images of Petri plates easily obtained by use of a flatbed scanner. A one-dimensional data vector was formed to characterize each digital image on the basis of the frequency-distribution curves of the red (R), green (G), and blue (B) colour values, and quantities derived from them, for example lightness (L), relative red (RR), relative green (RG), and relative blue (RB). The frequency distributions of hue, saturation, and intensity (HSI) were also calculated and included in the data vector used to describe each image. Multivariate non-linear modelling using the least-squares support vector machine (LS-SVM) and a linear model based on PLS regression were developed to relate the microbiological count and the frequency vector. Feasibly models were developed using the LS-SVM and errors were below than 10% for Lactobacillus quantification, indicating the proposed approach can be used for automatic counting of colonies.
dc.description387
dc.description3
dc.description1105
dc.description1112
dc.languageen
dc.publisherSpringer Heidelberg
dc.publisherHeidelberg
dc.publisherAlemanha
dc.relationAnalytical And Bioanalytical Chemistry
dc.relationAnal. Bioanal. Chem.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectmultivariate image analysis
dc.subjectcolour
dc.subjectlactobacillus
dc.subjectfermented milk
dc.subjectleast-squares support vector machines
dc.subjectChromatography-mass Spectrometry
dc.subjectInfrared-spectroscopy
dc.subjectClassification
dc.subjectBacteria
dc.subjectFood
dc.subjectIdentification
dc.subjectChemometrics
dc.subjectPrediction
dc.subjectGrowth
dc.subjectSvm
dc.titleQuantification of Lactobacillus in fermented milk by multivariate image analysis with least-squares support-vector machines
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución