dc.creatorBezerra, F
dc.creatorWainer, J
dc.date2012
dc.dateMAR
dc.date2014-08-01T18:19:13Z
dc.date2015-11-26T18:01:34Z
dc.date2014-08-01T18:19:13Z
dc.date2015-11-26T18:01:34Z
dc.date.accessioned2018-03-29T00:43:10Z
dc.date.available2018-03-29T00:43:10Z
dc.identifierInformation Systems. Pergamon-elsevier Science Ltd, v. 38, n. 1, n. 33, n. 44, 2012.
dc.identifier0306-4379
dc.identifier1873-6076
dc.identifierWOS:000310173200003
dc.identifier10.1016/j.is.2012.04.004
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/77128
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/77128
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1292012
dc.descriptionThis paper discusses four algorithms for detecting anomalies in logs of process aware systems. One of the algorithms only marks as potential anomalies traces that are infrequent in the log. The other three algorithms: threshold, iterative and sampling are based on mining a process model from the log, or a subset of it. The algorithms were evaluated on a set of 1500 artificial logs, with different profiles on the number of anomalous traces and the number of times each anomalous traces was present in the log. The sampling algorithm proved to be the most effective solution. We also applied the algorithm to a real log, and compared the resulting detected anomalous traces with the ones detected by a different procedure that relies on manual choices. (c) 2012 Elsevier Ltd. All rights reserved.
dc.description38
dc.description1
dc.description33
dc.description44
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationInformation Systems
dc.relationInf. Syst.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectAnomaly detection
dc.subjectProcess mining
dc.subjectProcess-aware systems
dc.subjectProcess Models
dc.subjectEvent Logs
dc.subjectConcurrent Workflows
dc.subjectChallenges
dc.subjectFramework
dc.subjectBehavior
dc.subjectIssues
dc.subjectFraud
dc.titleAlgorithms for anomaly detection of traces in logs of process aware information systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución