dc.creatorMoura, ITL
dc.creatorSilva, CLM
dc.creatorCheung, N
dc.creatorGoulart, PR
dc.creatorGarcia, A
dc.creatorSpinelli, JE
dc.date2012
dc.date42370
dc.date2014-08-01T18:24:59Z
dc.date2015-11-26T18:01:02Z
dc.date2014-08-01T18:24:59Z
dc.date2015-11-26T18:01:02Z
dc.date.accessioned2018-03-29T00:42:33Z
dc.date.available2018-03-29T00:42:33Z
dc.identifierMaterials Chemistry And Physics. Elsevier Science Sa, v. 132, n. 1, n. 203, n. 209, 2012.
dc.identifier0254-0584
dc.identifierWOS:000300865900032
dc.identifier10.1016/j.matchemphys.2011.11.033
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78609
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/78609
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1291873
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThe eutectic Sn-0.7 wt%Cu alloy is considered an important alternative to replace the classic eutectic Sn-Pb alloy, used to join metallic surfaces in electronic devices. The stable Sn-Cu eutectic is composed of a mixture of a tin-rich phase and fibrous Cu6Sn5 intermetallic particles. The morphology, size and distribution of stable and metastable intermetallic particles may affect the mechanical properties of the alloy. The distribution of these intermetallics is characterized by the interphase spacing, which depends on thermal parameters such as the growth rate (nu) and the cooling rate ((T) over dot) during solidification. The aim of this study is to investigate the microstructural evolution of a eutectic Sn-0.7 wt%Cu.solder alloy during transient solidification. The resulting microstructural morphology depends on v and T. and in the case of soldering processes the control of these parameters is essential for the design of the final microstructure. A gradual cellular to dendritic transition was observed to occur for growth rates ranging from 0.3 to 0.5 mm s(-1) and cooling rates from 0.9 to 1.5K s(-1). The cellular region was shown to be characterized by aligned eutectic colonies, and experimental growth laws relating cellular, dendritic and interphase spacings to both v and T have been proposed. (C) 2011 Elsevier B.V. All rights reserved.
dc.description132
dc.description1
dc.description203
dc.description209
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFAEPEX-UNICAMP
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherElsevier Science Sa
dc.publisherLausanne
dc.publisherSuíça
dc.relationMaterials Chemistry And Physics
dc.relationMater. Chem. Phys.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectAlloys
dc.subjectSolidification
dc.subjectOptical metallography
dc.subjectMicrostructure
dc.subjectLead-free Solder
dc.subjectHeat-transfer Coefficients
dc.subjectPb-free Solders
dc.subjectDirectional Solidification
dc.subjectMechanical-properties
dc.subjectSn-cu
dc.subjectCellular/dendritic Transition
dc.subjectProcessing Parameters
dc.subjectRod Spacings
dc.subjectMicrostructure
dc.titleCellular to dendritic transition during transient solidification of a eutectic Sn-0.7 wt%Cu solder alloy
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución