dc.creatorMoura, CP
dc.creatorVidal, CB
dc.creatorBarros, AL
dc.creatorCosta, LS
dc.creatorVasconcellos, LCG
dc.creatorDias, FS
dc.creatorNascimento, RF
dc.date2011
dc.date42309
dc.date2014-08-01T18:18:06Z
dc.date2015-11-26T17:58:26Z
dc.date2014-08-01T18:18:06Z
dc.date2015-11-26T17:58:26Z
dc.date.accessioned2018-03-29T00:41:53Z
dc.date.available2018-03-29T00:41:53Z
dc.identifierJournal Of Colloid And Interface Science. Academic Press Inc Elsevier Science, v. 363, n. 2, n. 626, n. 634, 2011.
dc.identifier0021-9797
dc.identifierWOS:000295192900027
dc.identifier10.1016/j.jcis.2011.07.054
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/76865
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/76865
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1291705
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThe capacity of a periodic mesoporous organosilica (PMO) to adsorb the aromatic compounds benzene, toluene, o-, and p-xylenes (BTX), which are usually present in produced waters, was investigated under both column and batch processes. The PMO was synthesized by condensation of 1,4 bis(triethoxisilyl)benzene (BTEB) under acidic conditions by using structure-directing agent (SDA) Pluronic P123 in the presence of KCl. Thermogravimetric analysis showed that the presence of the surfactant decreases the thermal stability of the PMO. The small-angle X-ray diffraction pattern, as well as the nitrogen adsorption/desorption isotherm measurements, revealed that the synthesized material has a crystalline structure, with hexagonally-ordered cylindrical mesopores. The adsorption kinetics study indicated an adsorption equilibrium time of 50 min and also showed that the data best fitted the pseudo-first order kinetic model. The intraparticle diffusion model was also tested and pointed to the occurrence of such process in all cases. Both Langmuir and Temkin models best represented the adsorption isotherms of toluene: Langmuir and Redlich-Peterson models best represented the data obtained for the other compounds. Adsorption capacity decreases in the order benzene > o-xylene > p-xylene > toluene. Satisfactory results were observed in the application of the synthesized PMO for the removal of BTX from aqueous solution. (C) 2011 Elsevier Inc. All rights reserved.
dc.description363
dc.description2
dc.description626
dc.description634
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCNPq [486059/2007-3]
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Colloid And Interface Science
dc.relationJ. Colloid Interface Sci.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectPeriodic mesoporous organosilica
dc.subjectAdsorption
dc.subjectBTX
dc.subjectMolecular-sieves
dc.subjectSilica
dc.subjectImmobilization
dc.subjectBiosorbent
dc.subjectSorption
dc.subjectMetals
dc.subjectBtex
dc.titleAdsorption of BTX (benzene, toluene, o-xylene, and p-xylene) from aqueous solutions by modified periodic mesoporous organosilica
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución