dc.creatorCiappina, JR
dc.creatorYamakami, A
dc.creatorSilva, RC
dc.date2012
dc.dateDEC
dc.date2014-08-01T18:27:58Z
dc.date2015-11-26T17:55:31Z
dc.date2014-08-01T18:27:58Z
dc.date2015-11-26T17:55:31Z
dc.date.accessioned2018-03-29T00:39:20Z
dc.date.available2018-03-29T00:39:20Z
dc.identifierComputers & Operations Research. Pergamon-elsevier Science Ltd, v. 39, n. 12, n. 3394, n. 3407, 2012.
dc.identifier0305-0548
dc.identifier1873-765X
dc.identifierWOS:000313379300041
dc.identifier10.1016/j.cor.2012.04.023
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/79338
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/79338
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1291062
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionWe present, in this paper, a method for solving linear programming problems with fuzzy costs based on the classical method of decomposition's Dantzig-Wolfe. Methods using decomposition techniques address problems that have a special structure in the set of constraints. An example of such a problem that has this structure is the fuzzy multicommodity flow problem. This problem can be modeled by a graph whose nodes represent points of supply, demand and passage of commodities, which travel on the arcs of the network. The objective is to determine the flow of each commodity on the arcs, in order to meet demand at minimal cost while respecting the capacity constraints of the arcs and the flow conservation constraints of the nodes. Using the theory of fuzzy sets, the proposed method aims to find the optimal solution, working with the problem in the fuzzy form during the resolution procedure. (c) 2012 Elsevier Ltd. All rights reserved.
dc.description39
dc.description12
dc.description3394
dc.description3407
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationComputers & Operations Research
dc.relationComput. Oper. Res.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectFuzzy linear programming
dc.subjectDecomposition
dc.subjectFuzzy multicommodity flow
dc.subjectShortest-path Problem
dc.subjectNetwork
dc.titleDecomposition's Dantzig-Wolfe applied to fuzzy multicommodity flow problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución