Artículos de revistas
Using a hybrid preconditioner for solving large-scale linear systems arising from interior point methods
Registro en:
Computational Optimization And Applications. Springer, v. 36, n. 41700, n. 149, n. 164, 2007.
0926-6003
WOS:000246107300002
10.1007/s10589-006-9009-5
Autor
Bocanegra, S
Campos, FF
Oliveira, ARL
Institución
Resumen
We devise a hybrid approach for solving linear systems arising from interior point methods applied to linear programming problems. These systems are solved by preconditioned conjugate gradient method that works in two phases. During phase I it uses a kind of incomplete Cholesky preconditioner such that fill-in can be controlled in terms of available memory. As the optimal solution of the problem is approached, the linear systems becomes highly ill-conditioned and the method changes to phase II. In this phase a preconditioner based on the LU factorization is found to work better near a solution of the LP problem. The numerical experiments reveal that the iterative hybrid approach works better than Cholesky factorization on some classes of large-scale problems. 36 41700 149 164