Artículos de revistas
Chaotic convergence of the decision-directed blind equalization algorithm
Registro en:
Communications In Nonlinear Science And Numerical Simulation. Elsevier Science Bv, v. 17, n. 12, n. 5097, n. 5109, 2012.
1007-5704
WOS:000307104000058
10.1016/j.cnsns.2012.05.015
Autor
Soriano, DC
Nadalin, EZ
Suyama, R
Romano, JMT
Attux, R
Institución
Resumen
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Classically, adaptive equalization algorithms are analyzed in terms of two possible steady state behaviors: convergence to a fixed point and divergence to infinity. This twofold scenario suits well the modus operandi of linear supervised algorithms, but can be rather restrictive when unsupervised methods are considered, as their intrinsic use of higher-order statistics gives rise to nonlinear update expressions. In this work, we show, using different analytical tools belonging to dynamic system theory, that one of the most emblematic and studied unsupervised approaches - the decision-directed algorithm - is potentially capable of presenting behaviors, like convergence to limit-cycles and chaos, that transcend the aforementioned dichotomy. These results also indicate theoretical possibilities concerning step-size selection and initialization. (C) 2012 Elsevier B.V. All rights reserved. 17 12 5097 5109 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)