dc.creatorBorges, CN
dc.creatorBreitkreitz, MC
dc.creatorBruns, RE
dc.creatorSilva, LMC
dc.creatorScarminio, LS
dc.date2007
dc.date42309
dc.date2014-11-18T20:59:09Z
dc.date2015-11-26T17:54:11Z
dc.date2014-11-18T20:59:09Z
dc.date2015-11-26T17:54:11Z
dc.date.accessioned2018-03-29T00:37:48Z
dc.date.available2018-03-29T00:37:48Z
dc.identifierChemometrics And Intelligent Laboratory Systems. Elsevier Science Bv, v. 89, n. 2, n. 82, n. 89, 2007.
dc.identifier0169-7439
dc.identifierWOS:000250256900003
dc.identifier10.1016/j.chemolab.2007.06.002
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/76415
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/76415
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/76415
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1290722
dc.descriptionAn unreplicated composite mixture design and statistical model are proposed to simultaneously optimize mixture systems having interaction effects. A split-plot design is made up of standard mixture designs at both the main-plot and sub-plot levels. The model is obtained by multiplying Scheffe mixture models for each mixture system. Equations for the coefficients of a special cubic-special cubic balanced model are presented as well as their standard errors for both random and split-plot design structures. The design is applied to the simultaneous optimization of both mobile phase chromatographic mixtures and extraction mixtures for the Baccharis mill flora (Less.) DC plant. The whole-plot extraction mixtures contained varying proportions of ethanol, ethyl acetate and dichloromethane in a simplex centroid design. The sub-plot reversed phase chromatographic mixtures also followed a simplex centroid design in varying proportions of methanol, acetonitrile and a methanol-acetonitrile-water 15:15:70% v/v mixture. Assuming random execution of experiments normal probability graphs for the coefficients of a saturated model were plotted to make an initial determination of significant model coefficients. These parameters were then refined using a reduced model containing a split-plot error structure. Two models were developed to estimate the number of peaks observed using the chromatographic detector at both 2 10 and 254 nm wavelengths. The significant model coefficients are interpreted physically in terms of interacting linear, curvature and special cubic effects. (c) 2007 Elsevier B.V. All rights reserved.
dc.description89
dc.description2
dc.description82
dc.description89
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationChemometrics And Intelligent Laboratory Systems
dc.relationChemometrics Intell. Lab. Syst.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectmixture designs
dc.subjectsplit-plot method
dc.subjectHPLC
dc.subjectextraction medium
dc.subjectBaccharis milleflora
dc.subjectProcess Variables
dc.subjectOptimization
dc.titleUnreplicated split-plot mixture designs and statistical models for optimizing mobile chromatographic phase and extraction solutions for fingerprint searches
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución