dc.creatorMONACO, RL
dc.creatorLAGOS, RE
dc.creatorRODRIGUES, WA
dc.date1995
dc.dateAUG
dc.date2014-12-16T11:33:26Z
dc.date2015-11-26T17:53:53Z
dc.date2014-12-16T11:33:26Z
dc.date2015-11-26T17:53:53Z
dc.date.accessioned2018-03-29T00:37:30Z
dc.date.available2018-03-29T00:37:30Z
dc.identifierFoundations Of Physics Letters. Plenum Publ Corp, v. 8, n. 4, n. 365, n. 373, 1995.
dc.identifier0894-9875
dc.identifierWOS:A1995RT72700005
dc.identifier10.1007/BF02187816
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/53703
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/53703
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/53703
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1290651
dc.descriptionIt is a well known result that the Feynman's path integral (FPI) approach to quantum mechanics is equivalent to Schrodinger's equation when we use as integration measure the Wiener-Lebesgue measure. This results in little practical applicability due to the great algebraic complexibity involved, and the fact is that almost all applications of (FPI) - ''practical calculations'' - are done using a Riemann measure. In this paper we present an expansion to all orders in time of FPI in a quest for a representation of the latter solely in terms of differentiable trajetories and Riemann measure. We show that this expansion agrees with a similar expansion obtained from Schrodinger's equation only up to first order in a Riemann integral context, although by chance both expansions referred to above agree for the free. particle and harmonic oscillator cases. Our results permit, from the mathematical point of view, to estimate the many errors done in ''practical'' calculations of the FPI appearing in the literature and, from the physical point of view, our results supports the stochastic approach to the problem.
dc.description8
dc.description4
dc.description365
dc.description373
dc.languageen
dc.publisherPlenum Publ Corp
dc.publisherNew York
dc.relationFoundations Of Physics Letters
dc.relationFound. Phys. Lett.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectPATH INTEGRALS
dc.subjectRIEMANN MEASURE
dc.subjectSCHRODINGER EQUATIONS
dc.titleA RIEMANN INTEGRAL APPROACH TO FEYNMANS PATH-INTEGRAL
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución