dc.creatorOchoa, EA
dc.creatorDroppa, R
dc.creatorBasso, RLO
dc.creatorMorales, M
dc.creatorCucatti, S
dc.creatorZagonel, LF
dc.creatorCzerwiec, T
dc.creatordos Santos, MC
dc.creatorFigueroa, CA
dc.creatorAlvarez, F
dc.date2013
dc.dateDEC 16
dc.date2014-07-31T14:03:48Z
dc.date2015-11-26T17:53:29Z
dc.date2014-07-31T14:03:48Z
dc.date2015-11-26T17:53:29Z
dc.date.accessioned2018-03-29T00:37:03Z
dc.date.available2018-03-29T00:37:03Z
dc.identifierMaterials Chemistry And Physics. Elsevier Science Sa, v. 143, n. 1, n. 116, n. 123, 2013.
dc.identifier0254-0584
dc.identifier1879-3312
dc.identifierWOS:000327684100016
dc.identifier10.1016/j.matchemphys.2013.08.027
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/75112
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/75112
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1290535
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionThe low energy (similar to 50-350 eV) noble gases ion bombardment of the steel surface shows that the pre-treatments increase nitrogen diffusion by modifying the outermost structure of the material. The surface microstructure and morphology of the studied samples were characterized by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The crystalline and chemical structures in the outermost layers of the surface were analyzed by grazing angle X-ray diffraction (GAXRD) and photoemission electron spectroscopy (XPS). Temperature effusion studies of the implanted ions are used to elucidate the noble gases site localization in the network. The local compressive stress induced by the nearby iron atoms on the core level electron wave functions of the trapped noble gases are studied by photoemission electron spectroscopy (XPS) and interpreted considering a simple mechanical model. Nano-hardness measurements show the dependence of the material elastic constant on the energy of the implanted noble gases. Although the ion implantation range is about few nanometers, the atomic attrition effect is larger enough to modify the material structure in the range of micrometers. Two material stress zones were detected where the outermost layers shows compressive stress and the underneath layers shows tensile stress. The implanted noble gases can be easily removed by heating. A diffusion model for polycrystalline-phase systems is used in order to discuss the influence of the atomic attrition on the N diffusion coefficient. The concomitant effect of grain refining, stress, and surface texture on the enhancing nitrogen diffusion effect is discussed. (C) 2013 Elsevier B.V. All rights reserved.
dc.description143
dc.description1
dc.description116
dc.description123
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFAPESP [2013/12501-4]
dc.languageen
dc.publisherElsevier Science Sa
dc.publisherLausanne
dc.publisherSuíça
dc.relationMaterials Chemistry And Physics
dc.relationMater. Chem. Phys.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectNitrides
dc.subjectDiffusion
dc.subjectXPS
dc.subjectMechanical properties
dc.subjectSurfaces
dc.subjectCarbon Nitride Films
dc.subjectElectronic-structure
dc.subjectIon-bombardment
dc.subjectThin-films
dc.subjectLow-energy
dc.subjectStress
dc.subjectImplantation
dc.subjectTemperatures
dc.subjectMechanisms
dc.subjectAisi-4140
dc.titleThe effect of noble gas bombarding on nitrogen diffusion in steel
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución