dc.creator | Popov, S | |
dc.creator | Vachkovskaia, M | |
dc.date | 2005 | |
dc.date | DEC 21 | |
dc.date | 2014-11-18T19:29:17Z | |
dc.date | 2015-11-26T17:53:27Z | |
dc.date | 2014-11-18T19:29:17Z | |
dc.date | 2015-11-26T17:53:27Z | |
dc.date.accessioned | 2018-03-29T00:37:01Z | |
dc.date.available | 2018-03-29T00:37:01Z | |
dc.identifier | Electronic Communications In Probability. Univ Washington, Dept Mathematics, v. 10, n. 263, n. 272, 2005. | |
dc.identifier | 1083-589X | |
dc.identifier | WOS:000234113800002 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/58871 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/58871 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/58871 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1290528 | |
dc.description | Starting with a percolation model in Z(d) in the subcritical regime, we consider a random walk described as follows: the probability of transition from x to y is proportional to some function f of the size of the cluster of y. This function is supposed to be increasing, so that the random walk is attracted by bigger clusters. For f(t) = e(beta t) we prove that there is a phase transition in beta, i.e., the random walk is subdiffusive for large beta and is diffusive for small beta. | |
dc.description | 10 | |
dc.description | 263 | |
dc.description | 272 | |
dc.language | en | |
dc.publisher | Univ Washington, Dept Mathematics | |
dc.publisher | Seattle | |
dc.publisher | EUA | |
dc.relation | Electronic Communications In Probability | |
dc.relation | Electron. Commun. Probab. | |
dc.rights | aberto | |
dc.source | Web of Science | |
dc.subject | subcritical percolation | |
dc.subject | subdiffusivity | |
dc.subject | reversibility | |
dc.subject | spectral gap | |
dc.subject | Markov-chains | |
dc.title | Random walk attracted by percolation clusters | |
dc.type | Artículos de revistas | |