dc.creatorPopov, S
dc.creatorVachkovskaia, M
dc.date2005
dc.dateDEC 21
dc.date2014-11-18T19:29:17Z
dc.date2015-11-26T17:53:27Z
dc.date2014-11-18T19:29:17Z
dc.date2015-11-26T17:53:27Z
dc.date.accessioned2018-03-29T00:37:01Z
dc.date.available2018-03-29T00:37:01Z
dc.identifierElectronic Communications In Probability. Univ Washington, Dept Mathematics, v. 10, n. 263, n. 272, 2005.
dc.identifier1083-589X
dc.identifierWOS:000234113800002
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/58871
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/58871
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/58871
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1290528
dc.descriptionStarting with a percolation model in Z(d) in the subcritical regime, we consider a random walk described as follows: the probability of transition from x to y is proportional to some function f of the size of the cluster of y. This function is supposed to be increasing, so that the random walk is attracted by bigger clusters. For f(t) = e(beta t) we prove that there is a phase transition in beta, i.e., the random walk is subdiffusive for large beta and is diffusive for small beta.
dc.description10
dc.description263
dc.description272
dc.languageen
dc.publisherUniv Washington, Dept Mathematics
dc.publisherSeattle
dc.publisherEUA
dc.relationElectronic Communications In Probability
dc.relationElectron. Commun. Probab.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectsubcritical percolation
dc.subjectsubdiffusivity
dc.subjectreversibility
dc.subjectspectral gap
dc.subjectMarkov-chains
dc.titleRandom walk attracted by percolation clusters
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución