dc.creatorBispo, JAC
dc.creatorBonafe, CFS
dc.creatorKoblitz, MGB
dc.creatorSilva, CGS
dc.creatorde Souza, AR
dc.date2013
dc.dateJAN
dc.date2014-07-30T20:06:50Z
dc.date2015-11-26T17:52:57Z
dc.date2014-07-30T20:06:50Z
dc.date2015-11-26T17:52:57Z
dc.date.accessioned2018-03-29T00:36:29Z
dc.date.available2018-03-29T00:36:29Z
dc.identifierJournal Of Mathematical Chemistry. Springer, v. 51, n. 1, n. 144, n. 152, 2013.
dc.identifier0259-9791
dc.identifierWOS:000312907600010
dc.identifier10.1007/s10910-012-0071-1
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/74684
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/74684
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1290393
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionThe use of the classic Henry-Michaelis-Menten (HMM) model (or simply, Michaelis-Menten model) to study the substrate and enzyme concentration dependence of enzyme catalysis is a very important step in understanding many biochemical processes, including microbial growth. Although the HMM model has been extensively studied, the conditions in which the substrate concentration is not in excess have still not been adequately defined mathematically. This lack of definition occurs despite at the cellular and molecular levels most systems generally do not operate in a state of substrate excess. In the present work, we describe an approach for studying enzyme reactions in which substrate concentrations are not in excess. Our results show that the use of extent of reactions and numerical simulation of the velocities of reaction provides an important advance in this field and furnishes results not obtained in previous studies involving these aspects. This approach, in association with knowledge of the rate constants, provides a direct and easy means of examining the single substrate-enzyme profile during product formation at any enzyme-substrate ratio. This approach is more direct than previous models that required the use of empirical equations with arbitrary constants.
dc.description51
dc.description1
dc.description144
dc.description152
dc.descriptionFundacao de Amparo a Pesquisa do Estado da Bahia (FAPESB)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.languageen
dc.publisherSpringer
dc.publisherNew York
dc.publisherEUA
dc.relationJournal Of Mathematical Chemistry
dc.relationJ. Math. Chem.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectEnzyme concentration
dc.subjectEnzyme kinetics
dc.subjectMichaelis-Menten model
dc.subjectTime dependence of species concentration
dc.subjectRate-equation
dc.subjectKinetics
dc.titleSubstrate and enzyme concentration dependence of the Henri-Michaelis-Menten model probed by numerical simulation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución