dc.creatorGaribaldi, E
dc.creatorLopes, AO
dc.date2013
dc.dateMAR
dc.date2014-07-30T19:43:55Z
dc.date2015-11-26T17:51:45Z
dc.date2014-07-30T19:43:55Z
dc.date2015-11-26T17:51:45Z
dc.date.accessioned2018-03-29T00:35:09Z
dc.date.available2018-03-29T00:35:09Z
dc.identifierStochastics And Dynamics. World Scientific Publ Co Pte Ltd, v. 13, n. 1, 2013.
dc.identifier0219-4937
dc.identifierWOS:000316947900003
dc.identifier10.1142/S0219493712500098
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/73784
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/73784
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1290054
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFor a topologically transitive subshift of finite type defined by a symmetric transition matrix, we introduce a temperature-based problem related to the usual thermodynamic formalism. This problem is described by an operator acting on Holder continuous observables which is actually superlinear with respect to the max-plus algebra. We thus show that, for each fixed absolute temperature, such an operator admits a unique eigenfunction and a unique eigenvalue. We also study the convergence as the temperature goes to zero and we relate the limit objects to an ergodic version of Kantorovich transshipment problem.
dc.description13
dc.description1
dc.descriptionPROCAD UNICAMP-UFRGS [162-2007]
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionPRONEX Sistemas Dinamicos
dc.descriptionINCT em Matematica
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionPROCAD UNICAMP-UFRGS [162-2007]
dc.languageen
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.publisherSingapore
dc.publisherSingapura
dc.relationStochastics And Dynamics
dc.relationStoch. Dyn.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectThermodynamic formalism
dc.subjecteffective potential
dc.subjecttransshipment
dc.subjectGibbs state
dc.subjectadditive eigenvalue
dc.subjectmaximizing probabilities
dc.subjectHamilton-jacobi Equations
dc.subjectEntropy
dc.subjectHomogenization
dc.titleTHE EFFECTIVE POTENTIAL AND TRANSSHIPMENT IN THERMODYNAMIC FORMALISM AT ZERO TEMPERATURE
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución