dc.creatorPereira, AN
dc.creatorTrevisan, OV
dc.date2014
dc.dateFEB
dc.date2014-07-30T14:06:14Z
dc.date2015-11-26T17:51:45Z
dc.date2014-07-30T14:06:14Z
dc.date2015-11-26T17:51:45Z
dc.date.accessioned2018-03-29T00:35:08Z
dc.date.available2018-03-29T00:35:08Z
dc.identifierJournal Of The Brazilian Society Of Mechanical Sciences And Engineering. Abcm Brazilian Soc Mechanical Sciences & Engineering, v. 36, n. 2, n. 393, n. 401, 2014.
dc.identifier1678-5878
dc.identifier1806-3691
dc.identifierWOS:000330597500016
dc.identifier10.1007/s40430-013-0093-z
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/58054
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/58054
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1290053
dc.descriptionThe present study deals with fingerprinting the oxidation behavior of a Brazilian crude (12(degrees) API) oil. It focuses on the determination of reaction kinetic parameters through classical thermal analysis techniques such as thermogravimetry (TG), differential thermal analysis (DTG) and scanning calorimetry (DSC). The required experimental data are collected from oil and oil-sand samples. The reaction data are treated following distinct conventional and isoconversional non-isothermal models, using integral and differential approaches based on Arrhenius' model. The thermoanalytical study is successful in identifying three oxidation temperature ranges: the low-temperature (LTO) range, a transition zone, and the high-temperature (HTO) range. TG and DSC analyses show that the highest variation of mass and the highest level of energy generation occur at the HTO range. At the high end of the LTO range, a mass transfer resistance (skin effect) was evident. Values of activation energy obtained for oil samples are 103 kJ mol(-1) for LTO and 278 kJ mol(-1) for HTO oxidation reactions by the most straightforward method used-the unity model. By all kinetic models, HTO's values are higher than those for LTO, observation also valid for the results of oil-sand samples. Results also evidence that the presence of sand contributes to the so-called skin effect.
dc.description36
dc.description2
dc.description393
dc.description401
dc.descriptionPetrobras-Cenpes
dc.descriptionFinep-Ctpetro
dc.languageen
dc.publisherAbcm Brazilian Soc Mechanical Sciences & Engineering
dc.publisherRio De Janeiro Rj
dc.publisherBrasil
dc.relationJournal Of The Brazilian Society Of Mechanical Sciences And Engineering
dc.relationJ. Braz. Soc. Mech. Sci. Eng.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectPetroleum
dc.subjectKinetics
dc.subjectCombustion
dc.subjectThermal analysis
dc.subjectOxidation
dc.subjectIn-situ Combustion
dc.subjectActivation-energy
dc.subjectIsoconversional Methods
dc.subjectThermogravimetric Data
dc.subjectSolids
dc.titleThermoanalysis and reaction kinetics of heavy oil combustion
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución