dc.creator | DEPIERRO, AR | |
dc.creator | IUSEM, AN | |
dc.date | 1993 | |
dc.date | MAY | |
dc.date | 2014-12-16T11:32:39Z | |
dc.date | 2015-11-26T17:51:15Z | |
dc.date | 2014-12-16T11:32:39Z | |
dc.date | 2015-11-26T17:51:15Z | |
dc.date.accessioned | 2018-03-29T00:34:37Z | |
dc.date.available | 2018-03-29T00:34:37Z | |
dc.identifier | Mathematics Of Operations Research. Inst Operations Research Management Sciences, v. 18, n. 2, n. 317, n. 333, 1993. | |
dc.identifier | 0364-765X | |
dc.identifier | WOS:A1993LC37300006 | |
dc.identifier | 10.1287/moor.18.2.317 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/57146 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/57146 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/57146 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1289928 | |
dc.description | We consider iterative methods using splittings for solving symmetric positive semidefinite linear complementarily problems. We prove strong convergence, i.e., convergence of the whole sequence, for these types of methods with the only hypothesis of existence of a solution. To do this we introduce dual methods for solving a dual quadratic programming problem and we prove linear convergence of such methods. | |
dc.description | 18 | |
dc.description | 2 | |
dc.description | 317 | |
dc.description | 333 | |
dc.language | en | |
dc.publisher | Inst Operations Research Management Sciences | |
dc.publisher | Linthicum Hts | |
dc.relation | Mathematics Of Operations Research | |
dc.relation | Math. Oper. Res. | |
dc.rights | aberto | |
dc.source | Web of Science | |
dc.subject | LINEAR COMPLEMENTARITY PROBLEM | |
dc.subject | QUADRATIC PROGRAMMING | |
dc.subject | ITERATIVE METHODS | |
dc.title | CONVERGENCE PROPERTIES OF ITERATIVE METHODS FOR SYMMETRICAL POSITIVE SEMIDEFINITE LINEAR COMPLEMENTARITY-PROBLEMS | |
dc.type | Artículos de revistas | |