dc.creatorDEPIERRO, AR
dc.creatorIUSEM, AN
dc.date1993
dc.dateMAY
dc.date2014-12-16T11:32:39Z
dc.date2015-11-26T17:51:15Z
dc.date2014-12-16T11:32:39Z
dc.date2015-11-26T17:51:15Z
dc.date.accessioned2018-03-29T00:34:37Z
dc.date.available2018-03-29T00:34:37Z
dc.identifierMathematics Of Operations Research. Inst Operations Research Management Sciences, v. 18, n. 2, n. 317, n. 333, 1993.
dc.identifier0364-765X
dc.identifierWOS:A1993LC37300006
dc.identifier10.1287/moor.18.2.317
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/57146
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/57146
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/57146
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1289928
dc.descriptionWe consider iterative methods using splittings for solving symmetric positive semidefinite linear complementarily problems. We prove strong convergence, i.e., convergence of the whole sequence, for these types of methods with the only hypothesis of existence of a solution. To do this we introduce dual methods for solving a dual quadratic programming problem and we prove linear convergence of such methods.
dc.description18
dc.description2
dc.description317
dc.description333
dc.languageen
dc.publisherInst Operations Research Management Sciences
dc.publisherLinthicum Hts
dc.relationMathematics Of Operations Research
dc.relationMath. Oper. Res.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectLINEAR COMPLEMENTARITY PROBLEM
dc.subjectQUADRATIC PROGRAMMING
dc.subjectITERATIVE METHODS
dc.titleCONVERGENCE PROPERTIES OF ITERATIVE METHODS FOR SYMMETRICAL POSITIVE SEMIDEFINITE LINEAR COMPLEMENTARITY-PROBLEMS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución