dc.creator | Pedronette, DCG | |
dc.creator | Penatti, OAB | |
dc.creator | Torres, RD | |
dc.date | 2014 | |
dc.date | FEB | |
dc.date | 2014-07-30T19:32:26Z | |
dc.date | 2015-11-26T17:51:06Z | |
dc.date | 2014-07-30T19:32:26Z | |
dc.date | 2015-11-26T17:51:06Z | |
dc.date.accessioned | 2018-03-29T00:34:27Z | |
dc.date.available | 2018-03-29T00:34:27Z | |
dc.identifier | Image And Vision Computing. Elsevier Science Bv, v. 32, n. 2, n. 120, n. 130, 2014. | |
dc.identifier | 0262-8856 | |
dc.identifier | 1872-8138 | |
dc.identifier | WOS:000332905300003 | |
dc.identifier | 10.1016/j.imavis.2013.12.009 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/73428 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/73428 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1289885 | |
dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | In this paper, we present an unsupervised distance learning approach for improving the effectiveness of image retrieval tasks. We propose a Reciprocal kNN Graph algorithm that considers the relationships among ranked lists in the context of a k-reciprocal neighborhood. The similarity is propagated among neighbors considering the geometry of the dataset manifold. The proposed method can be used both for re-ranking and rank aggregation tasks. Unlike traditional diffusion process methods, which require matrix multiplication operations, our algorithm takes only a subset of ranked lists as input, presenting linear complexity in terms of computational and storage requirements. We conducted a large evaluation protocol involving shape, color, and texture descriptors, various datasets, and comparisons with other post-processing approaches. The re-ranking and rank aggregation algorithms yield better results in terms of effectiveness performance than various state-of-the-art algorithms recently proposed in the literature, achieving bull's eye and MAP scores of 100% on the well-known MPEG-7 shape dataset (C) 2013 Elsevier B.V. All rights reserved. | |
dc.description | 32 | |
dc.description | 2 | |
dc.description | 120 | |
dc.description | 130 | |
dc.description | AMD | |
dc.description | FAEPEX | |
dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.language | en | |
dc.publisher | Elsevier Science Bv | |
dc.publisher | Amsterdam | |
dc.publisher | Holanda | |
dc.relation | Image And Vision Computing | |
dc.relation | Image Vis. Comput. | |
dc.rights | fechado | |
dc.rights | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dc.source | Web of Science | |
dc.subject | Content-based image retrieval | |
dc.subject | Re-ranking | |
dc.subject | Rank aggregation | |
dc.subject | Shape | |
dc.subject | Retrieval | |
dc.subject | Classification | |
dc.subject | Recognition | |
dc.subject | Distance | |
dc.title | Unsupervised manifold learning using Reciprocal kNN Graphs in image re-ranking and rank aggregation tasks | |
dc.type | Artículos de revistas | |