Artículos de revistas
Using contextual spaces for image re-ranking and rank aggregation
Registro en:
Multimedia Tools And Applications. Springer, v. 69, n. 3, n. 689, n. 716, 2014.
1380-7501
1573-7721
WOS:000333209300007
10.1007/s11042-012-1115-z
Autor
Pedronette, DCG
Torres, RD
Calumby, RT
Institución
Resumen
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) This article presents two novel re-ranking approaches that take into account contextual information defined by the K-Nearest Neighbours (KNN) of a query image for improving the effectiveness of CBIR systems. The main contributions of this article are the definition of the concept of contextual spaces for encoding contextual information of images; the definition of two new re-ranking algorithms that exploit contextual information encoded in contextual spaces; and the evaluation of the proposed algorithms in several CBIR tasks related to the combination of image descriptors; combination of visual and textual descriptors; and combination of post-processing (re-ranking) methods. We conducted a large evaluation protocol involving visual descriptors (considering shape, color, and texture) and textual descriptors, various datasets, and comparisons with other post-processing methods. Experimental results demonstrate the effectiveness of our approaches. 69 3 689 716 AMD FAEPEX [2007/-52015-0, 2009/-18438-7] Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) DGA/-UNICAMP Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) FAEPEX [2007/-52015-0, 2009/-18438-7]