Brasil | Artículos de revistas
dc.creatorda Silva, IN
dc.creatorAmaral, WC
dc.creatorArruda, LVR
dc.date2006
dc.dateMAR
dc.date2014-11-18T12:07:28Z
dc.date2015-11-26T17:50:07Z
dc.date2014-11-18T12:07:28Z
dc.date2015-11-26T17:50:07Z
dc.date.accessioned2018-03-29T00:33:17Z
dc.date.available2018-03-29T00:33:17Z
dc.identifierJournal Of Optimization Theory And Applications. Springer/plenum Publishers, v. 128, n. 3, n. 563, n. 580, 2006.
dc.identifier0022-3239
dc.identifierWOS:000241554100005
dc.identifier10.1007/s10957-006-9032-9
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/65265
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/65265
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/65265
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1289585
dc.descriptionNeural networks consist of highly interconnected and parallel nonlinear processing elements that are shown to be extremely effective in computation. This paper presents an architecture of recurrent neural net-works that can be used to solve several classes of optimization problems. More specifically, a modified Hopfield network is developed and its inter-nal parameters are computed explicitly using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points, which represent a solution of the problem considered. The problems that can be treated by the proposed approach include combinatorial optimiza-tion problems, dynamic programming problems, and nonlinear optimization problems.
dc.description128
dc.description3
dc.description563
dc.description580
dc.languageen
dc.publisherSpringer/plenum Publishers
dc.publisherNew York
dc.publisherEUA
dc.relationJournal Of Optimization Theory And Applications
dc.relationJ. Optim. Theory Appl.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectrecurrent neural networks
dc.subjectnonlinear optimization
dc.subjectdynamic programming
dc.subjectcombinatorial optimization
dc.subjectHopfield network
dc.titleNeural approach for solving several types of optimization problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución