dc.creatorBarea, LAM
dc.creatorVallini, F
dc.creatorde Rezende, GFM
dc.creatorFrateschi, NC
dc.date2013
dc.dateDEC
dc.date2014-07-30T18:43:40Z
dc.date2015-11-26T17:49:47Z
dc.date2014-07-30T18:43:40Z
dc.date2015-11-26T17:49:47Z
dc.date.accessioned2018-03-29T00:32:53Z
dc.date.available2018-03-29T00:32:53Z
dc.identifierIeee Photonics Journal. Ieee-inst Electrical Electronics Engineers Inc, v. 5, n. 6, 2013.
dc.identifier1943-0655
dc.identifier1943-0647
dc.identifierWOS:000328737800008
dc.identifier10.1109/JPHOT.2013.2289977
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/72081
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/72081
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1289481
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionPhotonic systems based on microring resonators have a fundamental constraint given by the strict relationship among free spectral range, total quality factor QT, and resonator size, intrinsically making filter spacing, photonic lifetime, and footprint interdependent. Here, we break this paradigm employing CMOS-compatible silicon-on-insulator photonic molecules based on coupled multiple inner ring resonators. The resonance wavelengths and their respective linewidths are controlled by the hybridization of the quasiorthogonal photonic states. We demonstrate photonic molecules with doublet and triplet resonances with spectral splitting only achievable with single-ring orders of magnitude larger in footprint. In addition, this splitting is potentially controllable based on the coupling (bonds) between resonators. Finally, the spatial distribution of the hybrid states allows up to sevenfold QT enhancement.
dc.description5
dc.description6
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionCenter for Optics and Photonics (CePOF) [05/51689-2]
dc.descriptionNational Institute for Science and Technology (FOTONICOM) [08/57857-2]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCenter for Optics and Photonics (CePOF) [05/51689-2]
dc.descriptionNational Institute for Science and Technology (FOTONICOM) [08/57857-2]
dc.languageen
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.publisherPiscataway
dc.publisherEUA
dc.relationIeee Photonics Journal
dc.relationIEEE Photonics J.
dc.rightsfechado
dc.rightshttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dc.sourceWeb of Science
dc.subjectSilicon nanophotonics
dc.subjectwaveguide devices
dc.subjectWhispering-gallery Modes
dc.subjectMicroring Resonators
dc.subjectRing-resonator
dc.subjectWave-guides
dc.subjectOptical Buffers
dc.subjectSilicon Chip
dc.subjectSlow-light
dc.subjectLaser
dc.subjectEnhancement
dc.subjectModulation
dc.titleSpectral Engineering With CMOS Compatible SOI Photonic Molecules
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución