dc.creatorde Almeida, MF
dc.creatorFerreira, LCF
dc.date2012
dc.dateSEP-OCT
dc.date2014-07-30T18:31:49Z
dc.date2015-11-26T17:49:35Z
dc.date2014-07-30T18:31:49Z
dc.date2015-11-26T17:49:35Z
dc.date.accessioned2018-03-29T00:32:41Z
dc.date.available2018-03-29T00:32:41Z
dc.identifierDifferential And Integral Equations. Khayyam Publ Co Inc, v. 25, n. 41921, n. 957, n. 976, 2012.
dc.identifier0893-4983
dc.identifierWOS:000307371100009
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/71409
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/71409
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1289427
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThis paper is concerned with a fractional PDE that interpolates semilinear heat and wave equations. We show results on global-in-time well-posedness for small initial data in the critical Morrey spaces and space dimension n >= 1. We also remark how to derive the local-in-time version of the results. Qualitative properties of solutions like self-similarity, antisymmetry and positivity are also investigated. Moreover, we analyze the asymptotic stability of the solutions and obtain a class of asymptotically self-similar solutions.
dc.description25
dc.description41921
dc.description957
dc.description976
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFAPESP [00334-0/2011]
dc.languageen
dc.publisherKhayyam Publ Co Inc
dc.publisherAthens
dc.publisherEUA
dc.relationDifferential And Integral Equations
dc.relationDiffer. Integral Equ.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectNavier-stokes Equation
dc.subjectIntegrodifferential Equations
dc.subjectDiffusion-equations
dc.subjectEvolution-equations
dc.subjectGlobal-solutions
dc.subjectHeat-equations
dc.subjectWeak Solutions
dc.subjectBlow-up
dc.titleSELF-SIMILARITY, SYMMETRIES AND ASYMPTOTIC BEHAVIOR IN MORREY SPACES FOR A FRACTIONAL WAVE EQUATION
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución