dc.creatorMilanes, A
dc.date2003
dc.dateJUN
dc.date2014-07-30T18:43:24Z
dc.date2015-11-26T17:49:32Z
dc.date2014-07-30T18:43:24Z
dc.date2015-11-26T17:49:32Z
dc.date.accessioned2018-03-29T00:32:37Z
dc.date.available2018-03-29T00:32:37Z
dc.identifierCommunications On Pure And Applied Analysis. Amer Inst Mathematical Sciences, v. 2, n. 2, n. 233, n. 250, 2003.
dc.identifier1534-0392
dc.identifierWOS:000182980800007
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/71927
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/71927
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1289412
dc.descriptionFor the bidimensional version of the generalized Benjamin-Ono equation: u(t) - H-(x) u(xy) + u(p)u(y) = 0, t is an element of R, (x, y) is an element of R-2, we use the method of parabolic regularization to prove local well-posedness in the spaces H-s (R-2), s > 2 and in the weighted spaces F-r(s) = H-s (R-2) boolean AND L-2 ((1 + x(2) + y(2))(r) dxdy), s > 2, r is an element of [0, 1] and F-1,k(k) = H-k (R-2) boolean AND L-2 ((1 + x(2) + y(2k))dxdy), k is an element of N, k greater than or equal to 3. As in the case of BO there is lack of persistence for both the linear and nonlinear equations (for p odd) in F-2(s). That leads to unique continuation principles in a natural way. By standard methods based on L-p - L-q estimates of the associated group we obtain global well-posedness for small initial data and nonlinear scattering for p greater than or equal to 3, s > 3. Nonexistence of square integrable solitary waves of the form u(x, y, t) = v(x, y - ct), c > 0, p is an element of {1, 2} is obtained using the results about existence of solitary waves of the BO and variational methods.
dc.description2
dc.description2
dc.description233
dc.description250
dc.languageen
dc.publisherAmer Inst Mathematical Sciences
dc.publisherSpringfield
dc.publisherEUA
dc.relationCommunications On Pure And Applied Analysis
dc.relationCommun. Pure Appl. Anal
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectBenjamin-Ono equation
dc.subjectnonlinear dispersive equations
dc.subjectwell-posedness
dc.subjectunique continuation principles
dc.subjectnonlinear scattering
dc.subjectsolitary waves
dc.subjectBenjamin-ono-equation
dc.subjectKorteweg-devries Equation
dc.subjectWeighted Sobolev Spaces
dc.subjectInternal Waves
dc.subjectSolitary Waves
dc.subjectScattering
dc.subjectExistence
dc.subjectUniqueness
dc.subjectModels
dc.subjectFluids
dc.titleSome results about a bidimensional version of the generalized BO
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución