dc.creatorAngulo, J
dc.creatorBona, JL
dc.creatorLinares, F
dc.creatorScialom, M
dc.date2002
dc.dateMAY
dc.date2014-11-18T06:33:24Z
dc.date2015-11-26T17:47:26Z
dc.date2014-11-18T06:33:24Z
dc.date2015-11-26T17:47:26Z
dc.date.accessioned2018-03-29T00:30:05Z
dc.date.available2018-03-29T00:30:05Z
dc.identifierNonlinearity. Iop Publishing Ltd, v. 15, n. 3, n. 759, n. 786, 2002.
dc.identifier0951-7715
dc.identifierWOS:000175697700016
dc.identifier10.1088/0951-7715/15/3/315
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/71482
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/71482
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/71482
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1288781
dc.descriptionFor a class of generalized Korteweg-de Vries equations of the form u(t) + (u(p))(x) - D(beta)u(x) = 0 (*) posed in R and for the focusing nonlinear Schrodinger equations iu(t) + Deltau + \u\(p)u = 0 (**) posed on R(n), it is well known that the initial-value problem is globally in time well posed provided the exponent p is less than a critical power p(crit). For p greater than or equal to p(crit), it is known for equation (**) and suspected for equation (*) (known for p = 5 and beta = 2) that large initial data need not lead to globally defined solutions. It is our purpose here to investigate the critical case p = p(crit) in more detail than heretofore. Building on previous work of Weinstein, Laedke, Spatschek and their collaborators, earlier work of the present authors and others, a stability result is formulated for small perturbations of ground-state solutions of (**) and solitary-wave solutions of (*). This theorem features a scaling that is natural in the critical case. When interpreted in the contexts in view, our general result provides information about singularity formation in the case the solution blows up in finite time and about large-time asymptotics in the case the solution is globally defined.
dc.description15
dc.description3
dc.description759
dc.description786
dc.languageen
dc.publisherIop Publishing Ltd
dc.publisherBristol
dc.publisherInglaterra
dc.relationNonlinearity
dc.relationNonlinearity
dc.rightsfechado
dc.rightshttp://iopscience.iop.org/page/copyright
dc.sourceWeb of Science
dc.subjectBenjamin-ono-equation
dc.subjectDe-vries Equation
dc.subjectCritical Power Nonlinearity
dc.subjectKorteweg-devries Equation
dc.subjectBlow-up Solutions
dc.subjectSolitary Waves
dc.subjectSchrodinger-equation
dc.subjectModel-equations
dc.subjectLong Waves
dc.subjectEvolution-equations
dc.titleScaling, stability and singularities for nonlinear, dispersive wave equations: the critical case
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución