dc.creatorde Freitas, LR
dc.creatorda Silva, EC
dc.creatorMansanares, AM
dc.creatorTessier, G
dc.creatorFournier, D
dc.date2005
dc.dateSEP 15
dc.date2014-11-18T06:18:22Z
dc.date2015-11-26T17:47:21Z
dc.date2014-11-18T06:18:22Z
dc.date2015-11-26T17:47:21Z
dc.date.accessioned2018-03-29T00:30:00Z
dc.date.available2018-03-29T00:30:00Z
dc.identifierJournal Of Applied Physics. Amer Inst Physics, v. 98, n. 6, 2005.
dc.identifier0021-8979
dc.identifierWOS:000232226000014
dc.identifier10.1063/1.2043231
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/71469
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/71469
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/71469
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1288757
dc.descriptionIn this paper we present an experimental and theoretical study of the thermoreflectance response as a function of the probe wavelength for layered microelectronics structures. The investigated sample consists of a polycrystalline silicon conducting track grown on a SiO2-coated Si substrate. Thermoreflectance measurements were carried out in the wavelength range from 450 to 750 nm with the track biased in modulated regime. An oscillating pattern is observed in the spectral region where the upper layer is transparent. Such oscillations are due to the interference resulting from the multiple reflections at the interfaces. Using a thermo-optical model, we show that the optical constants (n and k) of the materials, which are wavelength dependent, as well as their temperature derivatives (dn/dT and dk/dT), strongly influence the thermoreflectance signal. The optical thicknesses of the layers, mainly determined by the real part of the refractive indices, define the period of oscillation. On the other hand, the imaginary part of the refractive indices establishes the cutoff wavelength of the oscillations. Below this cutoff wavelength, the probe light does not penetrate the material and the upper-surface reflectance dominates the signal. (c) 2005 American Institute of Physics.
dc.description98
dc.description6
dc.languageen
dc.publisherAmer Inst Physics
dc.publisherMelville
dc.publisherEUA
dc.relationJournal Of Applied Physics
dc.relationJ. Appl. Phys.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectTemperature-measurements
dc.subjectElevated-temperatures
dc.subjectThermal-expansion
dc.subjectOptical Functions
dc.subjectSilicon
dc.subjectContrast
dc.subjectLasers
dc.titleSensitivity enhancement in thermoreflectance microscopy of semiconductor devices using suitable probe wavelengths
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución