dc.creatorEsfahani, A
dc.creatorPastor, A
dc.date2011
dc.dateMAR
dc.date2014-07-30T18:00:26Z
dc.date2015-11-26T17:46:34Z
dc.date2014-07-30T18:00:26Z
dc.date2015-11-26T17:46:34Z
dc.date.accessioned2018-03-29T00:29:06Z
dc.date.available2018-03-29T00:29:06Z
dc.identifierProceedings Of The American Mathematical Society. Amer Mathematical Soc, v. 139, n. 3, n. 943, n. 956, 2011.
dc.identifier0002-9939
dc.identifierWOS:000288727900018
dc.identifier10.1090/S0002-9939-2010-10532-4
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/69218
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/69218
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1288524
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionHere we consider results concerning ill-posedness for the Cauchy problem associated with the Benjamin-Ono-Zakharov-Kuznetsov equation, namely, (IVP) {u(t) - Hu(xx) + u(xyy) +u(k)u(x) = 0, (x, y) is an element of R(2), t is an element of R(+), u(x, y, 0) = phi(x, y). For k = 1, (IVP) is shown to be ill-posed in the class of anisotropic Sobolev spaces H(s1, s2) (R(2)), s(1),s(2) is an element of R, while for k >= 2 ill-posedness is shown to hold in H(s1,s2) (R(2)), 2s(1) + s(2) < 3/2 - 2/k. Furthermore, for k = 2,3, and some particular values of s(1), s(2), a stronger result is also established.
dc.description139
dc.description3
dc.description943
dc.description956
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFAPESP [2008/58892-6]
dc.descriptionCNPq [152234/2007-1]
dc.languageen
dc.publisherAmer Mathematical Soc
dc.publisherProvidence
dc.publisherEUA
dc.relationProceedings Of The American Mathematical Society
dc.relationProc. Amer. Math. Soc.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectNonlinear PDE
dc.subjectCauchy problem
dc.subjectill-posedness
dc.subjectGlobal Well-posedness
dc.subjectKdv Equation
dc.subjectI Equation
dc.subjectSchrodinger
dc.subjectIssues
dc.titleILL-POSEDNESS RESULTS FOR THE (GENERALIZED) BENJAMIN-ONO-ZAKHAROV-KUZNETSOV EQUATION
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución