dc.creatorPrates, MO
dc.creatorAssuncao, RM
dc.creatorCosta, MA
dc.date2012
dc.dateDEC
dc.date2014-07-30T17:42:33Z
dc.date2015-11-26T17:45:08Z
dc.date2014-07-30T17:42:33Z
dc.date2015-11-26T17:45:08Z
dc.date.accessioned2018-03-29T00:27:26Z
dc.date.available2018-03-29T00:27:26Z
dc.identifierComputational Statistics. Springer Heidelberg, v. 27, n. 4, n. 715, n. 737, 2012.
dc.identifier0943-4062
dc.identifierWOS:000310379900007
dc.identifier10.1007/s00180-011-0286-9
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/67489
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/67489
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1288092
dc.descriptionThis paper presents a flexible scan test statistic to detect disease clusters in data sets represented as a hierarchical tree. The algorithm searches through the branches of the tree and it is able to aggregate leaves located in different branches. The test statistic combines two terms, the log-likelihood of the data and the amount of information necessary to computationally code each potential cluster. This second term penalizes the search algorithm avoiding the detection of oddly shaped clusters and it is based on the Minimum Description Length (MDL) principle. Our MDL method reaches an automatic compromise between bias and variance. We present simulated results showing that its power performance as compared to the usual scan statistic and the high accuracy of the MDL to identify clusters that are scattered on the tree. The MDL method is illustrated with a large database looking at the relationship between occupation and death from silicosis.
dc.description27
dc.description4
dc.description715
dc.description737
dc.languageen
dc.publisherSpringer Heidelberg
dc.publisherHeidelberg
dc.publisherAlemanha
dc.relationComputational Statistics
dc.relationComput. Stat.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectCluster detection
dc.subjectData mining
dc.subjectExploratory analysis
dc.subjectHierarchical tree
dc.subjectScan statistics
dc.subjectMinimum Description Length
dc.subjectSurveillance
dc.subjectSelection
dc.titleFlexible scan statistic test to detect disease clusters in hierarchical trees
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución