dc.creator | Andreani, R | |
dc.creator | Martinez, JM | |
dc.date | 2001 | |
dc.date | 2014-07-30T17:53:12Z | |
dc.date | 2015-11-26T17:42:35Z | |
dc.date | 2014-07-30T17:53:12Z | |
dc.date | 2015-11-26T17:42:35Z | |
dc.date.accessioned | 2018-03-29T00:24:30Z | |
dc.date.available | 2018-03-29T00:24:30Z | |
dc.identifier | Optimization. Taylor & Francis Ltd, v. 50, n. 41732, n. 265, n. 278, 2001. | |
dc.identifier | 0233-1934 | |
dc.identifier | WOS:000171494700006 | |
dc.identifier | 10.1080/02331930108844563 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68796 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/68796 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1287339 | |
dc.description | A reformulation of the bounded mixed complementarity problem is introduced. It is proved that the level sets of the objective function are bounded and, under reasonable assumptions, stationary points coincide with solutions of the original variational inequality problem. Therefore, standard minimization algorithms applied to the new reformulation must succeed. This result is applied to the compactification of unbounded mixed complementarity problems. | |
dc.description | 50 | |
dc.description | 41732 | |
dc.description | 265 | |
dc.description | 278 | |
dc.language | en | |
dc.publisher | Taylor & Francis Ltd | |
dc.publisher | Abingdon | |
dc.publisher | Inglaterra | |
dc.relation | Optimization | |
dc.relation | Optimization | |
dc.rights | fechado | |
dc.rights | http://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp | |
dc.source | Web of Science | |
dc.subject | mixed complementarity problem | |
dc.subject | variational inequalities | |
dc.subject | box constrained minimization | |
dc.subject | reformulation | |
dc.subject | Nonlinear Complementarity | |
dc.subject | Constrained Minimization | |
dc.subject | Variational-inequalities | |
dc.subject | Optimization | |
dc.subject | Algorithms | |
dc.title | On the solution of bounded and unbounded mixed complementarity problems | |
dc.type | Artículos de revistas | |