dc.creatorAndreani, R
dc.creatorMartinez, JM
dc.date2001
dc.date2014-07-30T17:53:12Z
dc.date2015-11-26T17:42:35Z
dc.date2014-07-30T17:53:12Z
dc.date2015-11-26T17:42:35Z
dc.date.accessioned2018-03-29T00:24:30Z
dc.date.available2018-03-29T00:24:30Z
dc.identifierOptimization. Taylor & Francis Ltd, v. 50, n. 41732, n. 265, n. 278, 2001.
dc.identifier0233-1934
dc.identifierWOS:000171494700006
dc.identifier10.1080/02331930108844563
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68796
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/68796
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1287339
dc.descriptionA reformulation of the bounded mixed complementarity problem is introduced. It is proved that the level sets of the objective function are bounded and, under reasonable assumptions, stationary points coincide with solutions of the original variational inequality problem. Therefore, standard minimization algorithms applied to the new reformulation must succeed. This result is applied to the compactification of unbounded mixed complementarity problems.
dc.description50
dc.description41732
dc.description265
dc.description278
dc.languageen
dc.publisherTaylor & Francis Ltd
dc.publisherAbingdon
dc.publisherInglaterra
dc.relationOptimization
dc.relationOptimization
dc.rightsfechado
dc.rightshttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dc.sourceWeb of Science
dc.subjectmixed complementarity problem
dc.subjectvariational inequalities
dc.subjectbox constrained minimization
dc.subjectreformulation
dc.subjectNonlinear Complementarity
dc.subjectConstrained Minimization
dc.subjectVariational-inequalities
dc.subjectOptimization
dc.subjectAlgorithms
dc.titleOn the solution of bounded and unbounded mixed complementarity problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución