Artículos de revistas
Robust mixture modeling based on scale mixtures of skew-normal distributions
Registro en:
Computational Statistics & Data Analysis. Elsevier Science Bv, v. 54, n. 12, n. 2926, n. 2941, 2010.
0167-9473
WOS:000281333900005
10.1016/j.csda.2009.09.031
Autor
Basso, RM
Lachos, VH
Cabral, CRB
Ghosh, P
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) A flexible class of probability distributions, convenient for modeling data with skewness behavior, discrepant observations and population heterogeneity is presented. The elements of this family are convex linear combinations of densities that are scale mixtures of skew-normal distributions. An EM-type algorithm for maximum likelihood estimation is developed and the observed information matrix is obtained. These procedures are discussed with emphasis on finite mixtures of skew-normal, skew-t, skew-slash and skew contaminated normal distributions. In order to examine the performance of the proposed methods, some simulation studies are presented to show the advantage of this flexible class in clustering heterogeneous data and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. A real data set is analyzed, illustrating the usefulness of the proposed methodology. (C) 2009 Elsevier B.V. All rights reserved. 54 12 SI 2926 2941 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)