dc.creatorGeromel, JC
dc.creatorColaneri, P
dc.date2006
dc.dateJAN
dc.date2014-11-17T20:20:30Z
dc.date2015-11-26T17:42:02Z
dc.date2014-11-17T20:20:30Z
dc.date2015-11-26T17:42:02Z
dc.date.accessioned2018-03-29T00:23:53Z
dc.date.available2018-03-29T00:23:53Z
dc.identifierSystems & Control Letters. Elsevier Science Bv, v. 55, n. 1, n. 81, n. 85, 2006.
dc.identifier0167-6911
dc.identifierWOS:000234148000011
dc.identifier10.1016/j.sysconle.2004.11.016
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/71191
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/71191
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/71191
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1287180
dc.descriptionThis paper provides global asymptotic stability conditions for time-varying continuous-time polytopic systems, using a parameter dependent Lyapunov function. The time varying parameter uncertainty as well as its time derivative are modelled as belonging to polytopic convex sets and their dependence is made explicit to get less conservative results. A particular case, characterized by the parameter uncertainty satisfying a linear differential equation is analyzed and a simpler version of the aforementioned stability conditions is presented. The results are expressed in terms of linear matrix inequalities being thus numerically solvable with no big difficulty. The theory is illustrated by the determination of the asymptotic stability region of a Mathieu's type equation with an uncertain time varying parameter. (c) 2005 Elsevier B.V. All rights reserved.
dc.description55
dc.description1
dc.description81
dc.description85
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationSystems & Control Letters
dc.relationSyst. Control Lett.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjecttime-varying linear systems
dc.subjectlinear matrix inequality
dc.subjectMathieu's equation
dc.subjectDependent Lyapunov Functions
dc.subjectLinear-systems
dc.subjectControl Design
dc.titleRobust stability of time varying polytopic systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución