Artículos de revistas
On the eigenvalues of the twisted Dirac operator
Registro en:
Journal Of Mathematical Physics. Amer Inst Physics, v. 50, n. 6, 2009.
0022-2488
WOS:000267599900031
10.1063/1.3133944
Autor
Jardim, M
Leao, RF
Institución
Resumen
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Given a compact Riemannian spin manifold whose untwisted Dirac operator has trivial kernel, we find a family of connections del(At) for t is an element of [0,1] on a trivial vector bundle of rank no larger than dim M+1, such that the first eigenvalue of the twisted Dirac operator D(At) is nonzero for t not equal 1 and vanishes for t = 1. However, if one restricts the class of twisting connections considered, then nonzero lower bounds do exist. We illustrate this fact by establishing a nonzero lower bound for the Dirac operator twisted by Hermitian-Einstein connections over Riemann surfaces. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3133944] 50 6 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) CNPq [305464/2007-8] FAPESP [2005/04558-0]