dc.creatorBozhkov, Y
dc.creatorSilva, KAA
dc.date2012
dc.dateSEP
dc.date2014-07-30T14:48:35Z
dc.date2015-11-26T17:41:04Z
dc.date2014-07-30T14:48:35Z
dc.date2015-11-26T17:41:04Z
dc.date.accessioned2018-03-29T00:22:49Z
dc.date.available2018-03-29T00:22:49Z
dc.identifierNonlinear Analysis-theory Methods & Applications. Pergamon-elsevier Science Ltd, v. 75, n. 13, n. 5069, n. 5078, 2012.
dc.identifier0362-546X
dc.identifierWOS:000305144900031
dc.identifier10.1016/j.na.2012.04.023
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/62028
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/62028
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1286904
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionWe study the nonlinear self-adjointness of a general class of quasilinear 2D second order evolution equations which do not possess variational structure. For this purpose, we use the method of Ibragimov, devised and developed recently. This approach enables one to establish the conservation laws for any differential equation. We first obtain conditions determining the self-adjoint sub-class in the general case. Then, we establish the conservation laws for important particular cases: the Ricci Flow equation, the modified Ricci Flow equation and the nonlinear heat equation. (C) 2012 Elsevier Ltd. All rights reserved.
dc.description75
dc.description13
dc.description5069
dc.description5078
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationNonlinear Analysis-theory Methods & Applications
dc.relationNonlinear Anal.-Theory Methods Appl.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectNonlinear self-adjointness
dc.subjectStrict and quasi-self-adjointness
dc.subjectConservation laws
dc.subject2D Ricci flow equation
dc.subjectConservation-laws
dc.subjectSymmetries
dc.subjectInvariants
dc.titleNonlinear self-adjointness of a 2D generalized second order evolution equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución