dc.creator | Bozhkov, Y | |
dc.creator | Silva, KAA | |
dc.date | 2012 | |
dc.date | SEP | |
dc.date | 2014-07-30T14:48:35Z | |
dc.date | 2015-11-26T17:41:04Z | |
dc.date | 2014-07-30T14:48:35Z | |
dc.date | 2015-11-26T17:41:04Z | |
dc.date.accessioned | 2018-03-29T00:22:49Z | |
dc.date.available | 2018-03-29T00:22:49Z | |
dc.identifier | Nonlinear Analysis-theory Methods & Applications. Pergamon-elsevier Science Ltd, v. 75, n. 13, n. 5069, n. 5078, 2012. | |
dc.identifier | 0362-546X | |
dc.identifier | WOS:000305144900031 | |
dc.identifier | 10.1016/j.na.2012.04.023 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/62028 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/62028 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1286904 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | We study the nonlinear self-adjointness of a general class of quasilinear 2D second order evolution equations which do not possess variational structure. For this purpose, we use the method of Ibragimov, devised and developed recently. This approach enables one to establish the conservation laws for any differential equation. We first obtain conditions determining the self-adjoint sub-class in the general case. Then, we establish the conservation laws for important particular cases: the Ricci Flow equation, the modified Ricci Flow equation and the nonlinear heat equation. (C) 2012 Elsevier Ltd. All rights reserved. | |
dc.description | 75 | |
dc.description | 13 | |
dc.description | 5069 | |
dc.description | 5078 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.language | en | |
dc.publisher | Pergamon-elsevier Science Ltd | |
dc.publisher | Oxford | |
dc.publisher | Inglaterra | |
dc.relation | Nonlinear Analysis-theory Methods & Applications | |
dc.relation | Nonlinear Anal.-Theory Methods Appl. | |
dc.rights | fechado | |
dc.rights | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dc.source | Web of Science | |
dc.subject | Nonlinear self-adjointness | |
dc.subject | Strict and quasi-self-adjointness | |
dc.subject | Conservation laws | |
dc.subject | 2D Ricci flow equation | |
dc.subject | Conservation-laws | |
dc.subject | Symmetries | |
dc.subject | Invariants | |
dc.title | Nonlinear self-adjointness of a 2D generalized second order evolution equation | |
dc.type | Artículos de revistas | |