dc.creatorde Oliveira, PX
dc.creatorBassani, RA
dc.creatorBassani, JWM
dc.date2008
dc.dateNOV
dc.date2014-11-17T17:41:36Z
dc.date2015-11-26T17:41:01Z
dc.date2014-11-17T17:41:36Z
dc.date2015-11-26T17:41:01Z
dc.date.accessioned2018-03-29T00:22:46Z
dc.date.available2018-03-29T00:22:46Z
dc.identifierIeee Transactions On Biomedical Engineering. Ieee-inst Electrical Electronics Engineers Inc, v. 55, n. 11, n. 2635, n. 2642, 2008.
dc.identifier0018-9294
dc.identifierWOS:000260865600017
dc.identifier10.1109/TBME.2008.2001135
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/80860
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/80860
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/80860
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1286891
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionDefibrillator-type shocks may cause electric and contractile dysfunction. In this study, we determined the relationship between probability of lethal injury and electric field intensity (E) in isolated rat ventricular myocytes, with emphasis on field orientation and stimulus waveform. This relationship was sigmoidal with irreversible injury for E > 50 V/cm. During both threshold and lethal stimulation, cells were twofold more sensitive to the field when it was applied longitudinally (versus transversally) to the cell major axis. For a given E, the estimated maximum variation of transmembrane potential (Delta V-max) was greater for longitudinal stimuli, which might account for the greater sensitivity to the field. Cell death, however, occurred at lower maximum Delta V-max values for transversal shocks. This might be explained by a less steep spatial decay of transmembrane potential predicted for transversal stimulation, which would possibly result in occurrence of electroporation in a larger membrane area. For the same stimulus duration, cells were less sensitive to field-induced injury when shocks were biphasic (versus monophasic). Ours results indicate that, although significant myocyte death may occur in the E range expected during clinical defibrillation, biphasic shocks are less likely to produce irreversible cell injury.
dc.description55
dc.description11
dc.description2635
dc.description2642
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFAPESP [2004/10652-6]
dc.descriptionCNPq [2005/300632-3]
dc.languageen
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.publisherPiscataway
dc.publisherEUA
dc.relationIeee Transactions On Biomedical Engineering
dc.relationIEEE Trans. Biomed. Eng.
dc.rightsfechado
dc.rightshttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dc.sourceWeb of Science
dc.subjectCalcium overload
dc.subjectdefibrillation
dc.subjectelectric field stimulation
dc.subjectelectropermeabilization
dc.subjectirreversible cell injury
dc.subjectDefibrillation Efficacy
dc.subjectCardiac Myocytes
dc.subjectSpheroidal Cells
dc.subjectWave-form
dc.subjectStimulation
dc.subjectElectroporation
dc.subjectMembrane
dc.subjectShocks
dc.subjectCalcium
dc.subjectMuscle
dc.titleLethal Effect of Electric Fields on Isolated Ventricular Myocytes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución