Artículos de revistas
Characterization of hNek6 Interactome Reveals an Important Role for Its Short N-Terminal Domain and Colocalization with Proteins at the Centrosome
Registro en:
Journal Of Proteome Research. Amer Chemical Soc, v. 9, n. 12, n. 6298, n. 6316, 2010.
1535-3893
WOS:000284856200019
10.1021/pr100562w
Autor
Meirelles, GV
Lanza, DCF
da Silva, JC
Bernachi, JS
Leme, AFP
Kobarg, J
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Physical protein protein interactions are fundamental to all biological processes and are organized in complex networks One branch of the kinome network is the evolutionarily conserved NIMA-related serine/threonine kinases (Neks) Most of the 11 mammalian Neks studied so far are related to cell cycle regulation and due to association with diverse human pathologies, Neks are promising chemotherapeutic targets Human Nek6 was associated to carcinogenesis but its interacting partners and signaling pathways remain elusive Here we introduce hNek6 as a highly connected member in the human kinase interactome In a more global context, we performed a broad data bank comparison based on degree distribution analysis and found that the human kinome is enriched in hubs Our networks include a broad set of novel hNek6 interactors as identified by our yeast two hybrid screens classified into 18 functional categories All of the tested interactions were confirmed and the majority of tested substrates were phosphorylated in vitro by hNek6 Notably, we found that hNek6 N-terminal is important to mediate the interactions with its partners Some novel interactors also colocalized with hNek6 and gamma-tubulin in human cells, pointing to a possible centrosomal interaction The interacting proteins link hNek6 to novel pathways, for example, Notch signaling and actin cytoskeleton regulation, or give new insights on how hNek6 may regulate previously proposed pathways such as cell cycle regulation, DNA repair response, and NF-kappa B signaling Our findings open new perspectives in the study of hNek6 role in cancer by analyzing its novel interactions in specific pathways in tumor cells which may provide important implications for drug design and cancer therapy 9 12 6298 6316 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Associacao Brasileira de Tecnologia de Luz Sincrotron (ABTLuS) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)