dc.creatorCamargo, RF
dc.creatorChiacchio, AO
dc.creatorde Oliveira, EC
dc.date2008
dc.dateMAR
dc.date2014-07-30T14:44:37Z
dc.date2015-11-26T17:40:09Z
dc.date2014-07-30T14:44:37Z
dc.date2015-11-26T17:40:09Z
dc.date.accessioned2018-03-29T00:21:48Z
dc.date.available2018-03-29T00:21:48Z
dc.identifierJournal Of Mathematical Physics. Amer Inst Physics, v. 49, n. 3, 2008.
dc.identifier0022-2488
dc.identifierWOS:000254537500034
dc.identifier10.1063/1.2890375
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/61830
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/61830
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1286646
dc.descriptionUsing methods of differential and integral calculus, we present and discuss the calculation of a fractional Green function associated with the one-dimensional case of the so-called general fractional telegraph equation with one space variable. This is a fractional partial differential equation with constant coefficients. The equation is solved by means of juxtaposition of transforms, i.e., we introduce the Laplace transform in the time variable and the Fourier transform in the space variable. Several particular cases are discussed in terms of the parameters. Some known results are recovered. As a by-product of our main result, we obtain two new relations involving the two-parameter Mittag-Leffler function. (C) 2008 American Institute of Physics.
dc.description49
dc.description3
dc.languageen
dc.publisherAmer Inst Physics
dc.publisherMelville
dc.publisherEUA
dc.relationJournal Of Mathematical Physics
dc.relationJ. Math. Phys.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectMultidimensional Solutions
dc.subjectDiffusion
dc.subjectTime
dc.subjectVibrations
dc.subjectSystems
dc.titleDifferentiation to fractional orders and the fractional telegraph equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución